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ABS TRACT 24433 
This  r e p o r t  

development of a 

p re sen t s  t h e  r e s u l t s  of a research  e f f o r t  concerned with the  

genera l  d i g i t a l  computer program capable of so lv ing  s e t s  of 

non l inea r  a l g e b r a i c  equat ions  which a re  c h a r a c t e r i s t i c  of f i l t e r  c i r c u i t  ana lys i s .  

The program u t i l i z e s  a combination of t h e  Newton-Raphson method and t h e  

Freudenstein-Roth technique. R e s u l t s  of computer runs  involving s i x  equat ions  

and unknowns and t h i r t e e n  equat ions  and unknowns a r e  presented.  

The r e p o r t  i n d i c a t e s  t h a t  t h e  computer program developed i s  capable  of 

so lv ing  sets of nonl inear  a l g e b r a i c  equations,and t h e  ease  wi th  which t h e  

s o l u t i o n  i s  achieved is  d i r e c t l y  r e l a t e d  t o  t h e  accuracy of t h e  i n i t i a l  estimates 

of t h e  r o o t s  t o  t h e  equat ions.  
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A r e sea rch  e f f o r t  has been c a r r i e d  out  t o  develop a genera l  d i g i t a l  computer 

program which is  capable  of simultaneously so lv ing  sets of  non l inea r  a l g e b r a i c  

equat ions which a r i s e  i n  problems involving f i l t e r  c i r c u i t  a n a l y s i s .  A number 

of d i f f e r e n t  numerical  techniques were considered.  

Raphson method and t h e  Freudenstein-Roth technique w a s  found t o  be t h e  most 

promising approach. To inc rease  t h e  l a t i t u d e  i n  t h e  s e l e c t i o n  of i n i t i a l  

estimates of t h e  r o o t s  t o  t h e  equat ions,  a s p e c i a l  i t e r a t i v e  s e l e c t i o n  process  

A combination of t h e  Newton- 

was developed t o  be used i n  conjunct ion wi th  t h e  combined Newton-Raphson 

Freudens t e i n  -Ro t h  technique 

The numerical  methods were incorporated i n t o  a d i g i t a l  computer program I 
which w a s  t e s t e d  on sets of  equat ions  c o n s i s t i n g  of s i x  equationsand t h i r t e e n  

equat ions .  

which appeared t o  ' ' c lu s t e r "  t oge the r  t o  some ex ten t .  For t h e  l a r g e r  s e t  of 

equa t ions ,  some d i f f i c u l t y  was encountered i n  achiev ing  convergence when t h e  

i n i t i a l  estimates were more than  one order  of  magnitude from t h e  a c t u a l  roo t s .  

I 

The program s u c c e s s f u l l y  solved each set f o r  two sets of r o o t s  

The conclus ion  was reached t h a t  the  program, wi th  t h e  combined numerical  

methods a l r e a d y  mentioned, i s  s u i t a b l e  f o r  s o l u t i o n  of sets of non l inea r  

a l g e b r a i c  equat ions.  

handle  equat ions  c h a r a c t e r i s t i c  of f i l t e r  c i r c u i t  a n a l y s i s ,  it w a s  noted t h a t  

o n l y  minor modi f ica t ions  would be necessary t o  pe rmi t  a p p l i c a t i o n  of t h e  program 

t o  any set  of nonl inear  a l g e b r a i c  equat ions.  

numerical re f inements  t o  t h e  program appeared l i k e l y .  Also, cons ide ra t ion  of 

Although t h e  program i s  s p e c i f i c a l l y  designed t o  

The p o s s i b i l i t y  of  c e r t a i n  

X 



I -  
the actual  a v a i l a b i l i t y  of e lectronic  components corresponding t o  the roots  

obtained seemed worthy of study. 

e f f o r t  be continued t o  invest igate  such i t e m s .  

The recommendation was made that  the research 

xi 



I .  
I -  
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

UORTHROP SPACE LABORATORES 

1.0 INTRODUCTION 

In filter circuit analysis, problems arise which involve the simultaneous 

solution of sets of nonlinear algebraic equations. 

hand can be extremely difficult, and if a large number of equations are involved, 

hand calculations become impractical. The use of digital computers, coupled 

with appropriate numerical techniques, is a logical approach to such problems. 

In developing the necessary digital computer program, consideration must be 

given to the fact that there are many different filter circuits, and the set 

of equations corresponding to any one circuit will generally be different from 

all other sets. 

of solving a number of different sets of equations. 

Solution of such sets by 

Thus the most desirable program is the most general, capable 

The Huntsville Department of Northrop Space Laboratories, under Contract 

NASS-20183 for the Aero-Astrodynamics Laboratory of Marshall Space Flight 

Center, has been engaged in the development of a general digital computer program 

capable of solving sets of nonlinear algebraic equations. Mr. Mario Rheinfurth 

of the Control Theory Branch, Dynamics and Flight Mechanics Division, has acted 

as the NASA Technical Representative for this research effort. 

of this report provides a detailed description of the problem involved, applicable 

numerical schemes, and digital computer considerations. A discussion of the 

computer program is presented in Section 3.0. 

obtained. 

Section 2.0 

Section 4.0 describes the results 

Conclusions and reconmendations are presented in Section 5.0.  
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2.0 TECHNICAL DISCUSS ION 

2.1 Statement of the Problem 

Transfer functions associated with electronic filter circuits, such as that 

shown in Figure 2-1, have the general form 

where 

T = transfer function 

G = number of terms in numerator 

N 

s = Laplace transform variable 

H = number of terms in denominator 

D 

= qth coefficient in series in numerator 
q 

= qth coefficient in series in denominator. 
9 

(2-1) 

Generally, the numerical values of the coefficients, N and D , are obtained by 
curve fitting. 

Q 9 

Based on circuit analysis of a given filter circuit, a set of 

equations can be derived. 

graph (ref. l), which makes use of Kirchhoff's Law, or by use of topology (ref. 2). 

The resulting set of equations may be written as 

The derivation can be accomplished by means of a flow 

where 

p = G + H  

2 



R1 

> 
P 

R3 
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> 

Figure 2-1. TYPICAL EIECTRONIC F I L T E R  C I R C U I T  
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(j=1,2, ... G) j-1 N 

Dj-G-l (j=G+l G+H) i F =  
j 

Y = circuit elements (resistances, inductances, and reciprocals of n 
capacitances) of unknown magnitude. 

Thus for each coefficient N or D 

appears as a constant, F It should be noted that although the magnitudes of 

the Yn are unknown, their identities as resistances, inductances, or reciprocals 

of capacitances are established by the filter circuit analysis. 

there is an equation in which the coefficient 
q 9 

j' 

The reciprocal 

of capacitance is used because the resulting form of JI is easier to work with. 
j 

In Eq. (2-2) the functions JI consist of a sum of terms of the form 
j 

J 

ilrj = 1 t ji 
i=l 

where the term t has the form 
ji 

t.. = dj 
31 I1k=l r( j, i,k)' (j=l, 2 , . . .p ) (i=l , 2 , . . .Q ) 

with 

Notice should be taken that for each unknown in each term the value of r(j,i,k) 

is known. Furthermore, for any value of j, all terms are of the same degree, 

dj. 
All of the functions, JI however, are not necessarily of the same degree. 

j' 

4 
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In order to establish an orderly relationship between Yn and the resistances, 

capacitances, and conductances, it is convenient to use the following arrangement: 

where 

- Yn - Rn (n=1,2,...~) 

'n - Ln+l-u 

'n - '"n+l-u-v 

(n=u+l.. .u+) - 

(n=u++l , . u-tv-tw ) - 

= the nth resistance Rn 

(2-5) 

Ln = the nth inductance 

Cn = the nth capacitance 

u =number of resistances in the circuit 

v =number of inductances in the circuit 

w =number of capacitances in the circuit. 

It is important to note that, based on Eq. (2-21, 

p = u + v + w  (2-6) 

The basic objective is to determine the values of the circuit components, 

Yn, which, subject to certain physical constraints, satisfy Eq. (2-2) for given 

values of F 

nonlinear equations with llp'r equations and Ifpr1 unknowns. 

Thus, the problem involves the simultaneous solution of sets of 1' 

2.2 Physical Considerations 

Because the circuit elements are real positive numbers, the desired roots 

must likewise fall in this category. For practical purposes there exist minimum 

.5 



and maximum values for resistances, inductances, and capacitances as indicated 

in Table 2-1, Thus, the roots to be obtained must fall in the appropriate 

range according to the identity of each unknown as a resistance, inductance, 

or reciprocal of capacitance. 

Because each inductance in a circuit also has a "built-inIt or natural 

resistance associated with it in series, consideration must be given to the 

functional relationship between each inductance and its natural resistance. 

In formulating Eq. (2-2), these natural resistances are treated as portions of 

unknown resistances, but actually they are each dependent on a particular 

inductance. Thus, in the circuit there existsv resistances which each contain 

a natural resistance. 

priate inductances it is convenient when numbering the circuit components to 

use t6e same numerical subscript for an inductance and the corresponding 

For ease in relating these resistances to the appro- 

resistance. Thus R1 contains the natural resistance for L1, R2 the natural 

resistance for 5 ,  etc. 
E q s .  (2-S), the natural resistance for Lm where 

In general, based on the relationships provided in 

Lm = Y (m=1,2,..,V) 
USm 

would be found in Rm where 

Rm = Ym (~1,2,.~.~) 

With the numbering arrangement outlined, all resistances with subscripts equal 

to or less than v are composed of two parts. 

Rm(b) for an inductance, and the second part is a tlsurplusllresistance, Rm 

One part is the natural resistance, 

( S )  

6 



I 

Table 2-1 

Range of Values for Filter Circuit Components 

Component Minimum Maximum 

Resistances (ohms) 2.4 x 10 -1 2.2 x 10 7 

2 
Inductances (henries) 5.0 3.5 x 10 

Capacitances (farads) 1.0 x 10-l1 1.5 x 10'1 

7 



o r  

(b)  (SI 
+ 'm Ym = Ym 

(m=l ,2 ,  .v)  (2-9) 

(m=1,2, * .v) (2-10) 

The f u n c t i o n a l  r e l a t i o n s h i p  between an inductance and i t s  n a t u r a l  r e s i s t a n c e  is 

dependent on t h e  electrical c h a r a c t e r i s t i c s  and phys ica l  dimensions of t h e  wire  

which makes up t h e  inductance.  

r e l a t i o n s h i p  between inductance and n a t u r a l  r e s i s t a n c e  appears  s a t i s f a c t o r y .  

Thus 

For p r a c t i c a l  purposes, however, a l i n e a r  

o r  

where Km = a constant  (normally taken a s  un i ty ) .  

Thus, by s u b s t i t u t i o n ,  

= Y(') + Km YUh 'm m 

(m=1,2,. . .v) (2-11) 

(m=1,2,. . .v) (2-12) 

(m=1,2, . . .v) (2-13) 

From Eq. (2-13) it can be seen t h a t  f o r  m=1,2,...v, Ym 

independent v a r i a b l e s  in s t ead  of Ym. 

whi le  a t  t h e  same time p o s i t i v e l y  iden t i fy ing  t h e  t r u e  independent unknowns, a 

change of v a r i a b l e  is  convenient.  

are t h e  t r u e  

To avoid unnecessary use  of s u p e r s c r i p t s ,  

Thus by d e f i n i t i o n ,  

8 



(2-14) 
(n=~+l,v+2~ . .p )  n 

All previously mentioned physical constraints for Yn apply also to Xn. 

terms of the new variables, Xn, Eqs. (2-2)  may be written 

In 

(j=1,2.. .p) (2-15) 
j n P I 

An examination of Eqs. (2-15) reveals that while the form of functions has 

changed from $J 

I$~(X~,X~,...X ..* X ) = F 

to oj the problem remains essentially the same. 
j 

In addition to the relationship between inductances and resistances, 

there also exists the question of incrementation. 

may be of such nonintegral values that some or ail of them cannot be exactly 

matched by circuit components which are normally fabricated. 

ponents of an actual filter circuit may only approximate the theoretical roots 

necessary to satisfy the appropriate equations for a given transfer function, 

The actual roots to Eqs. (2-2) 

Thus the com- 

2.3 App lication of Numerical Techniques 

Several techniques have been widely used for some time for simultaneous 

These include the Newton-Raphson solution of nonlinear algebraic equations. 

method, the Method of Steepest Descent, and relaxation. More recently, several 

new approaches have been developed. 

Freudenstein-Roth technique (ref. 3 ) .  

One of the most promising is the 

9 



I n  t h e  research  e f f o r t  covered by t h i s  r e p o r t ,  t h e  r e l a x a t i o n  method a s  

descr ibed  i n  re ference  4 was found t o  be r e l a t i v e l y  incompatible wi th  d i g i t a l  

computer appl ica t ion .  

a p p l i c a t i o n  of t h e  Newton-Raphson method, t h e  Method of S teepes t  Descent, and 

t h e  Freudenstein-Roth technique.  

As a r e s u l t ,  a t t e n t i o n  was p r imar i ly  d i r e c t e d  toward 

2.3.1 The Newton-Raphson Method 

hrobably t h e  most widely used method f o r  so lv ing  simultaneous nonl inear  

a l g e b r a i c  equat ions ,  a s  w e l l  a s  t ranscendenta l  equat ions,  is  t h e  Newton-Raphson 

method. The method i s  descr ibed  i n  var ious numerical a n a l y s i s  t e x t s  ( r e f s .  5 - 8 )  

and t h u s  only a b r i e f  d e s c r i p t i o n  need be given here .  

The Newton-Raphson method i s  a successive-approximation procedure. Based 

on an  i n i t i a l  es t imate  of t h e  unknowns, X;), t h e  va lues  of t h e  ( p ! O )  a r e  

c a l c u l a t e d  and compared wi th  t h e  values  F 

t h e  r e s i d u a l ,  E('! Thus 

3 
The d i f f e rence  i s  r e f e r r e d  t o  a s  

j' 

j 

where 

o r  i n  gene ra l  

10 

(2-16) 

(2-17) 



and 

x(~) =mth estimate of xn. n 

Obviously, when the residuals are all simultaneously zero,the solution has been 

achieved. A first-order series expansion for each of the functions 4 

initial estimate is used to approximate the functions. 

about the 
j 

Thus 

or by E q .  (2-15) 

Based on the definition of the residual a s  given by E q .  (2-161, 

or in general 

where 

(2-18) 

(2-19) 

(2-20) 

(2-21) 

11 



Eq. (2-21) r e p r e s e n t s  a s e t  of a lgeb ra i c  equat ions  i n  which the  unknowns 

a r e  AX?’. The p a r t i a l  d e r i v a t i v e s ,  a@(*)/aXn, which can be ca l cu la t ed  analy-  

t i c a l l y  o r  by f i n i t e  d i f f e rence ,  represent  known c o e f f i c i e n t s  i n  t h e  equat ion.  

Because t h e  ind ices  j and n both vary from 1 t o  p 9  t h i s  set of equat ions  may 

be seen t o  be l i n e a r  a lgeb ra i c  equat ions wi th  p equat ions and p unknowns. By 

means of such an approach a s  Cramerfs R u l e ,  successive e l imina t ion ,  o r  i t e r a t i o n ,  

t h e  va lues  of t h e  AX:) can be e s t ab l i shed .  

j 

I n  a c t u a l  p r a c t i c e ,  t h e  repeated app l i ca t ion  of t h e  process  w i l l  r e s u l t  i n  

a sys temat ic  reduct ion  of t h e  r e s i d u a l s  toward zero,  i f  convergence occurs .  

Normally, a s o l u t i o n  i s  considered t o  have been obtained when a l l  r e s i d u a l s  have 

been reduced t o  some prescr ibed  l eve l .  

Convergence c r i t e r i a  f o r  t h e  Newton-Raphson method can be given by means 

of a Lipschi tz  cond i t ion  as discussed i n  r e fe rence  6. 

i n h e r e n t l y  r e q u i r e  a knowledge of t h e  s o l u t i o n  before  providing an i n d i c a t i o n  

of convergence. Thus, f o r  p r a c t i c a l  purposes, a p p l i c a t i o n  of t he  c r i t e r i a  i s  

of l i t t l e  value.  The most usefu l  t o o l  a c t u a l l y  a v a i l a b l e  i n  t h i s  r e spec t  i s  t h e  

Jacobian  ma t r ix  

Unfortunately such c r i t e r i a  

I f  t h e  determinant of t h i s  mat r ix  i s  i d e n t i c a l l y  zero , then  the  set of equat ions  

r ep resen ted  by Eq. (2-21) is  not l i n e a r l y  independent,and t h e r e  i s  no unique 

s o l u t i o n  t o  t h i s  set of equat ions.  

f a i l s .  

For t h i s  case t h e  Newton-Raphson method 

If t h e  determinant of t h e  mat r ix  f o r  any s e t  of e s t ima tes  X p )  numerically 

1 2  



approaches zero or is very small, the Newton-Raphson method tends to diverge. 

In such a situation, a different set of estimates with a non-zero determinant 

must be used and the process restarted. 

Based on the brief discussion presented, it is obvious that an awareness of 

the value of determinant of the Jacobian matrix is  of importance in using the 

Newton-Raphson method. 

convergence will occur, however, is the actual application of the technique. 

The most practical method of establishing whether or not 

For most cases, based on pracpical experience, if a solution has not been 

(usually set at 2O) ,  limit’ obtained before m reaches some limiting value U 

convergence is not likely to occur. 

2.3.2 Method of Steepest Descent 

Several different versions of this method are available as discussed 

in references 6 and 9. For the sake of brevity, only that method which was 

actually used in the present study will be described. 

In its most general applications, the method applies to the location of 

the maximums or minimums of a function of several real variables. Thus, if 

the method is to be employed in the problem under consideration, the set of 

p equations must be represented by some function with a minimum point corresponding 

to each set of roots to the equations. 

The function 

13 
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can be seen t o  m e e t  t hese  requirements.  

The equat ion  

T ( X ~ , X ~ , . ~ ~ X  ) = cons tan t  
P 

(2-23 ) 

r ep resen t s  a su r face  i n  p-dimensional space. From v e c t o r  a n a l y s i s ,  a t  any 

po in t  (X1 (m) .*. X(m3, the  g rad ien t  of T ,  V T ~  i s  a vec to r  which is  normal t o  
P 

t h e  su r face  represented  by Eq. (2-23). For t h i s  reason,  t h e  vec to r  (-Vi) 

p o i n t s  i n  t h e  d i r e c t i o n  of most r a p i d  decrease of T wi th  r e spec t  t o  t h e  po in t  

(Xlrn)..* X(m)). I n i t i a l l y ,  a s  t h e  vec tor  i s  extended from t h e  po in t  ( X ~ ) e e . X ( m ) ) ,  

i t  i n t e r s e c t s  su r f aces  with success ive ly  smaller  va lues  of T. Because T can only 

have p o s i t i v e  va lues  f o r  r e a l  v a r i a b l e s ,  t h e  v e c t o r  -VT (X(m)e e 

even tuz l ly  i n t e r s e c t  a su r face  wi th  a value of T which i s  smaller than t h e  

P P 

w i l l  
1 P 

va lue  of T f o r  any o t h e r  su r face  which t h e  vec to r  w i l l  i n t e r s e c t .  I f  t h e  

v e c t o r  i s  extended beyond t h i s  p o i n t  of i n t e r s e c t i o n ,  t h e  su r faces  i n t e r s e c t e d  

w i l l  have success ive ly  l a r g e r  va lues  of T. I f  t h e  po in t  (X~m) .o*X(m))  i s  

r ep resen ted  by t h e  p o s i t i o n  v e c t o r  gm), 1 can be t r e a t e d  a s  a func t ion  of d 
The p o i n t  of i n t e r s e c t i o n  of t h e  vector  [-vT(R(m))] with t h e  su r face  of 

minimum va lue  of f can thus  be expressed by t h e  p o s i t i o n  v e c t o r  

P 
(m) 

where 

e s t a b l i s h e d  by t r e a t i n g  T a s  a funct ion of X a s  fol lows:  

is a v a r i a b l e  whose magnitude i s  not ye t  known. The va lue  of X can be 

T ( X  -+(m+l)) = T [ P  - X V T ( P ) ]  

- 1  - (m+l) (X)  (2-25) 
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From b a s i c  ca l cu lus ,  when T (mtl)(A) is  a t  a minimum ( o r  a maximum) with r e spec t  

t o  t h e  independent v a r i a b l e  A ,  

(2 -26)  

This  d i f f e r e n t i a l  can be expanded a s  fol lows:  

= - [Vr(X '(+1)) 8 vt(3(m))] 

v t ( a ( m ) )  0 v t [ a ( m )  - AVr(X +(m))] = 0 

Thus A must s a t i s f y  t h e  r e l a t i o n  

(2-27)  

(2-28) 

Equation (2-28)  must be solved by some i t e r a t i v e  scheme because it i s  i t s e l f  

a nonl inear  a l g e b r a i c  equat ion wi th  a s i n g l e  unknown, A .  I n  p r a c t i c e  it is 

convenient t o  approximate a i n  a s i n g l e  s t e p ,  

(2 -29)  

This  i n  essence r ep resen t s  an app l i ca t ion  of t h e  Newton-Raphson method t o  ob ta in  

a va lue  f o r  A .  

15 
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Once X i s  ca l cu la t ed ,  t h e  new pos i t i on  v e c t o r  X (*') is e s t a b l i s h e d .  

The process  is repeated u n t i l  t h e  va lue  of each AX:', there 

(2-30) 

is less than  some prescr ibed  l i m i t .  A t  th i s  po in t  t h e  va lues  of X F '  must be 

examined t o  determine whether o r  no t  they r ep resen t  r o o t s  t o  t h e  set of 

equat ions.  

a " f a l s e  minimumfl such t h a t  t h e  va lue  of T i s  no t  c l o s e  t o  zero.  For such a 

In  some cases  t h e  method converges t o  va lues  of Xn which r ep resen t  

case  t h e  va lues  of Xn obtained do not  represent  r o o t s  t o  t h e  equat ions .  

! 

2.3.3 Freudenstein-Roth Technique 

In applying e i t h e r  t h e  Newton-Raphson method o r  t h e  Method of S teepes t  

Descent,  convergence is very  l i k e l y  not t o  occur  un le s s  t h e  i n i t i a l  estimates 

of t h e  r o o t s  are i n  t h e  neighborhood of t h e  a c t u a l  values .  Obviously, i n  

many cases, t h e  loca t ions  of such neighborhoods a r e  unknown. The need t h e r e f o r e  

arises f o r  some means of improving i n i t i a l  estimates of t h e  roo t s .  

One method which shows promise is t h e  Freudenstein-Roth technique a s  

desc r ibed  i n  re ference  3. 

o f  t h i s  approach can be developed. 

d i scussed  here .  

f k o e f f  i c i e n t  approach" and t h e  second as t h e  "constant  approachf1. 

Because of i t s  f l e x i b i l i t y ,  many d i f f e r e n t  v a r i a t i o n s  

Only t h e  two ve r s ions  a c t u a l l y  used w i l l ' b e  

For b r e v i t y  t h e  f i rs t  of t h e s e  w i l l  be r e f e r r e d  t o  a s  t h e  

16 
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The f i r s t  s t e p  i n  t h e  c o e f f i c i e n t  approach involves  assuming some set of  

( O ) ,  f o r  t h e  roo t s .  These i n i t i a l  va lues  w i l l  gene ra l ly  not  'n i n i t i a l  va lues ,  

s a t i s f y  t h e  o r i g i n a l  equat ions.  

t h e  fol lowing set of equat ions:  

They do, however, r ep resen t  a set of r o o t s  t o  

where 

(j=1,2,  . . .p> (2-31) 

(2-32) 

and 

Eq. (2-31) r e p r e s e n t s  a set of equat ions which d i f f e r s  from t h e  set represented  

by Eq. (2-15) only  i n  t h a t  t h e  c o e f f i c i e n t s  A(') appear with t h e  f i r s t  term, t j l '  j 

Af te r  t h e  va lues  o f  t h e  c o e f f i c i e n t s  have been determined, a r ecu r s ion  

r e l a t i o n ,  t o  cause each A t o  approach un i ty ,  is es t ab l i shed .  This r e l a t i o n  

can be based on s e v e r a l  a l t e r n a t e  methods. 

t h e  fol lowing r e l a t i o n  is s u f f i c i e n t :  

j 
(m) 
j '  

For a simple l i n e a r  v a r i a t i o n  of A 

where 

V = t h e  se l ec t ed  number of i t e r a t i v e  s t e p s  i n  t h e  Freudenstein-Roth 

technique. 

However, when 

1 7  
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~ 

j 

I 

the following logarithmic variation is more useful: 
V-m - 

(2-34) 

(m=o,1,2.. .v) (2-39) 

may be 
j 

By means of either recursion relation, the values of A 

calculated, and a new set of equations established corresponding to Eq. (2-31). 

The values of X p )  are then used as initial estimates for the roots of the new 

set of equations. J j 
estimates will be in the neighborhood of the actual roots, X;'), for the new 

set of equations. 

roots, X(l), can be calculated for the set of equations containing A(1). 

such calculations, by means of the recurrence formula A(2) are calculated. 

are then used as initial estimates for calculating X(2)o 

repeated until on the V 

estimates X n 

If A(') are sufficiently close to A('), these initial 

Thus by means of the Newton-Raphson method, the actual 

After 

X 
n j 

(1) 
j n 

The ?recess is n 
th step, the coefficients A(') equal unity and the initial 

j 
are used to calculate X r )  which represent the true roots 

to Eq. (2-15). 

In the constant method, the procedure is similar to that for the 

coefficient method except rather than varying the coefficients, the constant terms, 

F , are varied. 
established by the relation 

Based on a set of initial estimates, X'O),  the values F ( O )  are 
j n 1 

(j=1,2 ...p) (2-36) 
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Based on t h e  l i n e a r  r ecu r s ion  r e l a t i o n  

where 

F'') = F .  ( t h e  t r u e  va lue  of t h e  cons tan t  term) 
j J 

t h e  va lues  of F(m) a r e  

set of r o o t s  (x:' f o r  
j 

on t h e  preceding r o o t s  
el. 

sys t ema t i ca l ly  changed. With each such change, a new 

t h e  corresponding set of equa t ions )  a r e  c a l c u l a t e d  basad 

X(m-'), and using t h e  Newton-Raphson method. As before ,  

(V 1 i n  t h e  VL" s t e p ,  t h e  va lue  of Xn ('-') is used a s  t h e  i n i t i a l  e s t ima te  of Xn 

which r e p r e s e n t s  t h e  set of t r u e  r o o t s  t o  Eq. (2-15). 

The r e l a t i v e  performance of the c o e f f i c i e n t  and cons tan t  approach is  n o t  

c l e a r l y  e s t ab l i shed .  However, t h e  cons tan t  method appears supe r io r  t o  t h e  

c o e f f i c i e n t  method whenever t h e  i n i t i a l  set of c o e f f i c i e n t s ,  A I o ) ,  used i n  t h e  

l a t t e r  method, a r e  negat ive.  
J 

To avoid such negat ive  c o e f f i c i e n t s  when using 

the c o e f f i c i e n t  method, it i s  des i r ab le  t o  a r r ange  t h e  terms t i n  each equat ion  

so t h a t  f o r  a given set of i n i t i a l  values ,  X r ) ,  t h e  term wi th  t h e  g r e a t e s t  

magnitude i s  t jl .  

j i  

The convergence c r i t e r i a  f o r  the Freudenstein-Roth method a r e  discussed 

i n  r e fe rence  3. Obviously, i f  t h e  s t ep  s i z e  i s  l a r g e ,  r e f l e c t i n g  a small va lue  

of V, t h e  Newton-Raphson method may f a i l .  

i n c r e a s i n g  t h e  value of V, but a point  may be reached beyond which f u r t h e r  

i n c r e a s e s  i n  V a r e  not  p r a c t i c a l .  

over  u s i n g  a new set of estimates. 

This  problem can be co r rec t ed  by 

I n  such a case ,  t h e  problem must be s t a r t e d  

19 
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2.4 S e l e c t i o n  of I n i t i a l  Estimates 

I n  t h e  problem under c o n s i d e r a t i o q t h e  range of va lues ,  w i t h i n  which t h e  

d e s i r e d  r o o t s  are found, i s  q u i t e  l a r g e  a s  i n d i c a t e d  by Table 2-1. Under such 

cond i t ions ,  i f  t h e  ind iv idua l  r o o t s  wi th in  a set are of d i f f e r e n t  o rde r s  of 

magnitude, cons iderable  d i f f i c u l t y  may be encountered i n  achiev ing  convergence 

wi th  any of  t h e  numerical methods descr ibed,  

a d d i t i o n a l  t o o l  t o  provide t h e  bes t  poss ib l e  i n i t i a l  estimates. 

which w a s  developed i n  t h e  course of the i n v e s t i g a t i o n  appears  worthy of 

d i s c u s s  i o n  

Thus, t h e  need a r i s e s  f o r  some 

One such t o o l  

The f i r s t  s t e p  i n  t h e  procedure involves  e s t a b l i s h i n g  a "range of i n t e r e s t "  

f o r  each unknown. 

a p p r o p r i a t e  e lectr ical  element as provided i n  Table 2-1,  

of i n t e r e s t ,  r ecu r s ion  r e l a t i o n s  and mean va lue  r e l a t i o n s  a r e  e s t a b l i s h e d  as 

fo l lows  : 

This  range must equal  o r  f a l l  w i t h i n  t h e  range of t h e  

Based on t h i s  range 

(2-39) 

where 

= lower l i m i t  of t h e  range of i n t e r e s t  for Yn 

= u p p e r  l i m i t  of t h e  range of i n t e r e s t  f o r  Yn 

'n(1ow) 

Y 
n(up 1 

W =number of s t e p s  se l ec t ed  f o r  use wi th  t h e  process.  
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- (1 ,1 )  
j 

The va lues  of ,I1) and t h e  va lues  y2, y 3 . .  .Y a r e  used t o  c a l c u l a t e  # 
P 

and t o  determine t h e  sum of t h e  absolu te  v a l u e s  of t h e  corresponding r e s i d u a l s ,  

- 
Y!m) i s  then  v a r i e d  according t o  E q .  (2-38) whi le  y2, .. .Y are  he ld  cons t an t .  

P 
The sum of t h e  a b s o l u t e  v a l u e s  of t h e  r e s i d u a l s  r e s u l t i n g  from each s t e p  are 

compared t o  determine t h e  minimum sum. The va lue  of Y p ’ ,  corresponding t o  

t h e  minimum value  of 

P 

(a131 

A t  t h i s  

i n i t i a l  

minimum 

y3 

i s  s e l e c t e d  and i t s  s u p e r s c r i p t  designated ( a l l ) .  

used w i t h  Y2 

r e s i d u a l s .  With - Y1 

t o  E q .  (2-38) u n t i l  a minimum sum i s  e s t ab l i shed .  

des igna ted  Y2 

The va lue  Y1 i s  then  
- - 

(’ ’2) and t h e  corresponding sum of t o  c a l c u l a t e  rcI 

(m)  i s  va r i ed  according 

(m) is 

j and Y, ... Y 
- - P 

y2 ’) and y3 .  e .Y he ld  cons t an t ,  
P 

The corresponding Y2 
- 

(a1 1 )  , Y3(m), y4.*,Y t o  f i n d  and is then  used along w i t h  Y 
1 P 

e .Y are es t ab l i shed .  

9 e O Y  

( a l l )  

1 P 

etc. After p c y c l e s  t h e  values  of Y1 

(’) and Y2 po in t  t h e  process  s t a r t s  over us ing  Y 

values .  The va lue  of t he  supe r sc r ip t  of Y p ) ,  corresponding t o  t h e  

sum of t h e  abso lu te  value of t he  r e s i d u a l s ,  i s  e s t a b l i s h e d  and des igna ted  

P 
as  ( a l p )  (a121 

a21. T h i s  s u p e r s c r i p t  i s  compared with a l l .  I f  la l l -a21]  5 ha ,  where Aa is  some 

( a l l )  (1) ( a i 3 ) e e , y  ( a l p )  
P 

s e l e c t e d  i n t e g e r ,  t h e  process  cont inues us ing  Y1 9 y2 9 y3 

etc.  The process  i s  considered complete (a221 a s  i n i t i a l  va lues  t o  e s t a b l i s h  Y2 

if f o r  p consecut ive  cyc le s ,  

I 

I 

lain-apnl I Aa. 
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If a t  any p o i n t ,  

laln-a2nl > Aa, 

i s  d i sca rded  and Y i s  set  equal t o  yn (a2n) t h e  o l d  va lue  of Yn 

Following such an event  t h e  p rocess  must con t inue  on f o r  a t  least  p c y c l e s  

without Aa being exceeded by ( a l n - a 2 n ( .  

s tar ts  over u n t i l  p consecut ive  cycles a r e  achieved without an inequa l i ty .  

r e s u l t i n g  estimates of Yn, des igna ted  Y ('), may then  be used a s  an estimate 

i n  conjunct ion  wi th  t h e  o t h e r  numerical t echniques  a l r eady  descr ibed .  

n 

Whenever Aa i s  exceeded, t h e  count ing  

The 

n 

2.5 D i g i t a l  Computer Cons idera t ions  

The numerical procedures prev ious ly  o u t l i n e d  are e s p e c i a l l y  s u i t e d  f o r  use  

w i t h  a d i g i t a l  computer. The most important f a c t o r  t o  cons ider  i n  developing 

a c o q u t e r  program invo lv ing  such techniques  is genera l  a p p l i c a b i l i t y  t o  d i f f e r e n t  

sets of equat ions .  Thus t h e  program should be f l e x i b l e  enough t o  so lve  any s e t  

of e q u a t l o n s  of t h e  form of Eq. ::2-2) i r r e g z r d l e s s  of t h e  number of equat ions  

o r  unknowns (p ) ,  t h e  number o f  terms i n  each equat ion  (Q.), o r  t h e  number of 

unknowns i n  each term ( d . ) .  
3 

3 

To achieve  t h e  d e s i r e d  f l e x i b i l i t y ,  t h e  i d e n t i t y  of each unknown i n  each 

term of each  equat ion  must be an input.  

t h i s  arrangement i s  based on t h e  concept of a s s ign ing  s u b s c r i p t s  t o  t h e  sub- 

s c r i p t s  a s  i n d i c a t e d  by Eq. (2 -4) .  Based on t h e  r e l a t i o n s h i p  between c i r c u i t  

elements and unknowns e s t a b l i s h e d  by Eqs. (2-5),  (2-7),  and (2 -8 )  a numerical  

v a l u e  (1 ,2 , . . .n .0ep)  can be assigned f o r  each subsc r ip t ed  s u b s c r i p t  r ( j , i , k ) .  

The v a l u e s  f o r  r ( j , i 9 k )  can thus  be read i n t o  t h e  computer and s t o r e d  i n  a 

The method developed f o r  accomplishing 
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sys temat ic  manner. 

f a c t o r  (k=2) of t h e  f o u r t h  term (i4) i n  t h e  t h i r d  equa t ion  (j=3).  

For example t h e  subsc r ip t  r (3 ,4 ,2 )  r e f e r s  t o  t h e  second 

I f  t h e  

subsc r ip t ed  v a r i a b l e  Y i s  c a l l e d  f o r ,  t h e  computer determines t h e  

va lue ,  n, which was t h e  inpu t  f o r  r ( j , i , k ) .  

r ( j , i , k )  

With t h e  va lue  of t h e  s u b s c r i p t  

e s t a b l i s h e d ,  t h e  appropr i a t e  Yn which has e i t h e r  been inpu t  o r  c a l c u l a t e d ,  i s  

= Y6. 
r (3 ,4 ,2 )  used f o r  Y For example, i f  r (3 ,4 ,2 )  = 6 ,  t hen  Y 

r ( j , i , k ) *  

Because t h e  s u b s c r i p t  of a p a r t i c u l a r  unknown Yn i s  i d e n t i c a l  t o  t h e  

s u b s c r i p t  of t h e  corresponding Xn, t h e  same technique  f o r  subsc r ip t ed  s u b s c r i p t s  

descr ibed  f o r  Yn, a p p l i e s  a l s o  t o  Xn. 

appears  most convenient t o  e s t a b l i s h  the  equa t ions  i n  terns of t h e  unknown 

v a r i a b l e s  Yn and then  t o  convert  t h e  equat ions  by a change of v a r i a b l e s  from 

Y t o  X according t o  Eq. (2-14) wi th in  the  computer program. Thus a l l  i n p u t s  

would r e f e r  t o  t h e  v a r i a b l e s  Yn. 

expressed  i n  terms of Y . 

Based on p r a c t i c a l  cons ide ra t ions ,  it 

n n 

Likewise, a l l  o u t p u t s  are mst convenient ly  

n 
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3.0 DIGITAL COMPUTER PROGRAM 

i 
Based on the technical considerations described in Section 2.0, a 

digital computer program has been developed in both FORTRAN I1 and FORTRAN IV 

for the simultaneous solution of sets of nonlinear algebraic equations. The 

program is designed as a working tool with maximum flexibility built-in. 

subsections which follow provide a description of the various features of 

the program. 

The 

3.1 Basic Features 

The program is designed to solve sets of nonlinear algebraic. equations 

of the type indicated by Eq. (2-2). 

Figure 3-1. 

included in Appendix A .  

is presented in Appendix B. 

IBM 7094 digital computer in FORTRAN IV and for the CDC 3200, SDS 930, 

and IBM 1620 computers in FORTRAN 11. For the case involving more than 

A general flow chart is provided in 

Copies of the source program written iii FORTRAll I1 and IV are 

A description of the subroutines included in the program 

This program has been checked out for use on the i 
I 

I 

, 10 equations and 10 unknowns, the core storage of the SDS 930 will probably 

, be exceeded. 

The program utilizes the Freudenstein-Roth technique in conjunction 

with the Newton-Raphson method. 

in the Freudenstein-Roth technique, the logarithmic variation as 

expressed by Eq. (2-35) is used. For the Newton-Raphson method all 

partial derivatives are calculated by analytical differentiation as 

opposed to finite difference methods. The Gaussian pivotal technique is 

used to solve the linear algebraic equations shown in Eq. (2-211, 

For the variation of the coefficients 

24 
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Figure 3-lc. SUBROUTINE SIMEQ 
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CONSTANT 
TERM FOR 

EACH 
EQUATION 

CALCULATE 
PARTIALS 

p SIMEQ 

a (x n = x  n 

I 
I YES 

RETURN 

I 
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-L 
RETURN L 1 
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X = X  + A X  

n n n c--..,> NOS = 2 (NOS + 1 

Figure  3 - l d .  SUBROUTINE FCON 
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A f t e r  t h e  terms of t h e  equat ions  and t h e  i n i t i a l  range of i n t e r e s t  f o r  

each unknown have been read  i n t o  t h e  computer, va lues  f o r  i n i t i a l  estimates 

of  each unknown are  e s t a b l i s h e d  by means of t h e  method f o r  s e l e c t i o n  of 

i n i t i a l  estimates, d iscussed  i n  Sect ion 2.4. The terms are  then rear ranged  

so t h a t  t h e  f i r s t  term i n  each equat ion i s  t h a t  term w i t h  t h e  l a r g e s t  

numerical  va lueo  With such an  arrangement of terms, and wi th  t h e  i n i t i a l  estimates, 

a s o l u t i o n  i s  at tempted us ing  t h e  c o e f f i c i e n t  method descr ibed  i n  Sec t ion  2.3 .  

I f  such a s o l u t i o n  i s  obtained,  i t  i s  p r i n t e d  out .  I f  t h i s  i s  not  success fu l ,  

t h e  v a l u e  of V ( t h e  s e l e c t e d  number of i t e r a t ive  s t e p s )  i s  doubled t o  reduce 

t h e  s i z e  of t h e  incremental  change i n  t h e  c o e f f i c i e n t s ,  and a s o l u t i o n  i s  aga in  

at tempted.  I f  no s o l u t i o n  i s  achieved, V i s  aga in  doubled. The process  

cont inues  u n t i l  a s o l u t i o n  i s  found or  t h e  v a l u e  of V exceeds some e s t a b l i s h e d  

l i m i t ,  V 

( t h e  o r d e r  i n  which they  were read i n t o  t h e  computer) and a s o l u t i o n  i s  a g a i n  

at tempted.  I f  t h i s  f a i l s ,  t h e  f i r s t  column of terms is  rep laced  by t h e  second 

A t  t h i s  p o i n t  t h e  terms are  rearranged i n  t h e i r  o r i g i n a l  o r d e r  l i m i t '  

I 

column and aga in  an  a t tempt  i s  made t o  o b t a i n  a so lu t ion .  The procedure i s  

r epea ted  a s  necessary ,  u s ing  t h e  c o e f f i c i e n t  approach, wi th  t h e  f i r s t  column 

Of t e rms  being success ive ly  rep laced  by t h e  o t h e r  columns w i t h i n  t h e  set  of 

QI i m i t  3 
equat ions .  

which i s  equal  t o  o r  less than  the  number of terms i n  t h e  longes t  equat ion  p l u s  

+1). one (Qj(rnax1 

been success ive ly  

The t o t a l  number of such a t tempts  i s  equal  t o  some va lue ,  

, a f t e r  a l l  terms have I n  those  equat ion where Q 

used as  t h e  f i r s t  term, t h e  term which w a s  o r i g i n a l l y  las t  
j < Qj(max) 

i s  used r epea ted ly  a s  t h e  f i r s t  term f o r  a l l  a d d i t i o n a l  a t tempts .  
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I f  t h e  c o e f f i c i e n t  approach does not y i e l d  a s o l u t i o n ,  t h e  program, 

through a subrout ine ,  a p p l i e s  t h e  constant  approach. This  approach uses 

t h e  s a m e  v a l u e  of  V as w a s  i n i t i a l l y  used with t h e  c o e f f i c i e n t  approach. 

The va lue ,  V 

f a i l s ,  a new set  of i n i t i a l  e s t i m a t e s  m u s t  be c a l c u l a t e d  by, o r  r ead  i n t o  t h e  

computer and t h e  e n t i r e  procedure repeated. 

i s  a l s o  used as before .  I f  t h e  cons tan t  approach l i m i t '  

3 . 2  Inpu t s  and Options 

A complete l i s t i n g  of a l l  items t o  be input  i s  incldded i n  Appendix C. 

This  l i s t i n g  inc ludes  FORTRAN symbol d e f i n i t i o n s  and u n i t s  corresponding 

t o  each inpu t  i t e m .  Input  i tems include t h e  va lues  of t h e  cons t an t s ,  

; and t h e  
'n(1ow) 9 to n(up> 

F ; t h e  range  of i n t e r e s t  f o r  each unknown, 

s u b s c r i p t s  i d e n t i f y i n g  t h e  arrangement of t he  unknowns i n  each equat ion,  r ( j , i , k ) .  
j 

Extreme care should be taken i n  prepar ing  t h e  va lues  of t h e  s u b s c r i p t s  

of t h e  unknowns t o  be used a s  inputs .  The correspondence between t h e  

s u b s c r i p t s  of t h e  unknowns, Yn, and the  r e s i s t a n c e s ,  inductances,  and 

capac i t ances  should be i n  accordance with Eqs. (2-5), (2-7) ,  and (2-8). 

I f  t h i s  correspondence i s  no t  used, o r  i f  any ind iv idua l  s u b s c r i p t  i s  

n o t  c o r r e c t l y  r ead  i n t o  t h e  computer, t h e  set  of equat ions which t h e  

computer w i l l  so lve  w i l l  no t  correspond t o  t h e  a c t u a l  set. Thus t h e  

s o l u t i o n  obta ined  w i l l  no t  s a t i s f y  the  c o r r e c t  set  of equat ions.  

An o p t i o n  i s  provided f o r  t he  manner i n  which t h e  i n i t i a l  set  of 

estimates a re  e s t ab l i shed .  I f  t he  values of Y 

to 'n(1ow)' n(1ow) 

estimates wi thout  use  of t h e  method of s e l e c t i o n  of i n i t i a l  e s t i m a t e s  

a r e  read  i n  as equal  

as  t h e  i n i t i a l  t h e  computer w i l l  use  t h e  va lue  Y 
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prev ious ly  descr ibed.  Otherwise,  t h e  computer w i l l . u s e  t h e  input  va lues  of  

and Y i n  conjunct ion  wi th  t h e  method of s e l e c t i n g  i n i t i a l  
Yn(low> n(up> 

estimates as  descr ibed  i n  Sec t ion  2.4. Notice should be taken t h a t  f o r  

convenience t h e  va lues  of Y , where (u+v)< n - p ,  a r e  read  i n  a s  capac i tances ,  

and no t  as  t h e  r e c i p r o c a l s  of t h e  capaci tances .  

n 

The r e c i p r o c a l s  f o r  t hese  Y n 

are  taken  w i t h i n  t h e  program. 

Options are  a l s o  provided f o r  e s t a b l i s h i n g  t h e  l i m i t i n g  va lue ,  Vlimit, 

f o r  t h e  number of i t e r a t i v e  s t e p s  i n  the Freudenstein-Roth technique,  and 

a l s o  f o r  U 

Newton-Raphson method. 

which i s  t h e  maximum number of s t e p s  t o  be used i n  t h e  l i m i t  

The inpu t  i t e m ,  Km, governs t h e  l i n e a r  r e l a t i o n s h i p s  between an  

inductance  and i t s  a s s o c i a t e d  n a t u r a l  r e s i s t a n c e  i n  accordance w i t h  Eq. 

(2-11). Normally t h e  inpu t  va lues  of K 

w i t h  accepted  electrical engineer ing  practice. 

a re  n o t  a s s o c i a t e d  wi th  any inductance,  t h e  va lue  of K should be input  a s  zero. 

are a l l  u n i t y ,  which i s  compatible m 

For t h o s e  r e s i s t a n c e s  which 

m 

An op t ion  i s  e s t a b l i s h e d  a s  t o  the number of columns of terms t o  be 

in te rchanged  i n  t h e  manner a l r eady  descr ibed i n  subsec t ion  3.1. The input  

v a l u e  of Qlimit e s t a b l i s h e s  t h e  number of such exchanges. There i s  a l s o  

a n  o p t i o n  as  t o  what a c t i o n  t h e  computer t a k e s  a f t e r  it ob ta ins  a set of 

s a t i s f a c t o r y  roo t s .  Depending on t h e  v a l u e  of MR (FORTRAN symbol) t h e  computer 

I 

may s t o p  a f t e r  f i nd ing  a set  of r o o t s  o r  may cont inue  searching f o r  a d d i t i o n a l  

sets of r o o t s  u n t i l  a l l  l i m i t s  (Ulimit, Vlimit, and Qlimit ) have been reached. 
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3 .3  outputs 

The outputs from the program are designed to provide the user not only 

with the solution to the problem but also with an indication of the steps 

taken in obtaining a solution. 

contained in Appendix C which includes a sample printout. 

A complete description of all outputs is 

The printout first provides a record of important input data and then 

gives a running account of progress toward a solution, Included in this 

account are a statement as to which Freudenstein-Roth technique (coefficient 

or constant) is being applied; the column number of the terms which have been 

danged with the first column (applicable only to the Coefficient approach); 

and the iterative step number versus the total number of steps in use with the 

Freudenstein-Roth technique, When a solution is obtained, the computer 

indicates whether or not the roots lie within the physical limits specified, 

Following this statement, the roots, written in terms of resistances, inductances, 

and capacitances are listed complete with units. 

statement indicating this fact is printed out. 

If no roots are found, a 
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4.0 DISCUSSION OF RESULTS 

I 
The computer program descr ibed i n  Sec t ion  3.0 w a s  used t o  so lve  

several d i f f e r e n t  sets of nonl inear  equat ions of t h e  form of Eq. (2-2). 

I n  a d d i t i o n  t o  t h e  program i n  t h e  form presented ,  several o the r  v e r s i o n s  

of t h e  program were t e s t e d .  

subsec t ions  which follow. 

The r e s u l t s  ob ta ined  a re  descr ibed  i n  t h e  

4.1 R e l a t i v e  Performance of Numerical Methods 

One v e r s i o n  of t h e  computer program contained a subrout ine  which used 

t h e  Method of S teepes t  Descent,  as descr ibed i n  Sec t ion  2 . 3 . 2 ,  t o  so lve  t h e  

equat ions .  Th i s  subrout ine  d i d  no t  ob ta in  s o l u t i o n s  un le s s  t h e  i n i t i a l  

guesses  w e r e  extremely c l o s e  t o  t h e  t r u e  r o o t s .  

t echnique  combined wi th  t h e  Newton-Raphson method c o n s i s t e n t l y  so lved  sets of 

equa t ions  which t h e  Method of S teepes t  Descent,  wi th  t h e  same set of i n i t i a l  

estimates, could n o t  solve.  The i n f e r i o r  performance of t h e  l a t t e r  method 

a p p a r e n t l y  r e s u l t e d  from a tendency toward convergence t o  f a l s e  mtnima, 

t h e  coord ina te s  of which d id  no t  r ep resen t  t r u e  r o o t s  t o  t h e  equat ions.  

Th i s  u n d e s i r a b l e  tendency w a s  poss ib ly  due t o  t h e  cons iderable  v a r i a t i o n  i n  t h e  

o r d e r s  of magnitude of t h e  unknowns which caused t h e  r e s i d u a l  of some equat ions  

t o  outweigh g r e a t l y  t h e  r e s i d u a l s  of o t h e r s .  Because of t h e  l ack  of success  

w i t h  t h e  Method of S teepes t  Descent, t h e  subrout ine  employing t h i s  technique 

w a s  d e l e t e d  from t h e  program i n  i t s  f i n a l  form. 

The Freudenstein-Roth 

Because of t h e  v a r i a t i o n  i n  t h e  o rde r s  of magnitude of t h e  unknowns, 

t h e  need  a r o s e  f o r  some method which could ppss ib ly  improve on a n  i n i t i a l  
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set of estimates. 

incorporated into the program. 

in some cases, but due to time limitations its true value has not yet been 

established. 

Accordingly the method described in Section 2.4 was 

The use of this technique proved beneficial 

4.2 Application to Actual Problems 

The digital computer program was used to solve sets of six equations 

and thirteen equations. 

in ref. 10. 

ref. 11 was also developed, but time limitations have not permitted application 

of the digital computer program to this set. 

The equations represented filter circuits described 

A set of fifteen equations based on a filter circuit described in 

4.2.1 Six Equations 

The program successfully solved a set of six equations and six 

unknowns which represent the filter circuit on page B-42 of ref. 10, 

equations are included in Appendix De 

The 

Table 4-1 presents representative values 

and Y used and the roots obtained, In general the program 
Of 'n(1ow) n(up> 
experienced no difficulty handling this set of equations. 

4.2.2 Thirteen Equations 

Solution of a set of thirteen equations and thirteen unknowns, based 

on the filter circuit shown on page B-93 of ref. 10 was a l s o  attempted 

by the computer program. 

4-2 presents the values of Yn(low) and Y 

The equations are presented in Appendix E, Table 

used and the resulting roots, 
n (up) 
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TABLE 4-1 

RESULTS OF COMPUTER SOLUTION OF SIX EQUATIONS I 

Corresponding Electrical  
Components I 

n Y 
Run # - n Yn(low) Yn(up) - 

3 

3 

2 

1 

1 

L(6-4-F) 1 4,000 4,000 2535.5886 R(1)=2.5355886 x 10 ohms 

2 6,000 6,000 2136,2946 R(2)=2,1362946 x 10 ohms I 

3 800 800 561 a 72030 R(3)=5,6172030 x 10 ohms 

4 40 40 28.0860 15 L(1)=2,8086015 x 10 henr i e s  

5 80 80 28.483928 L(2)=2,8483928 x 10 henr ies  

6 20,000 20,000 12,601.871 C (1)=7 93532960 x f a r a d s  

3 

. 3  

2 

1 

B(6-8-FC) 1 1,500 1,500 1,999.9954 R(1)=1,9999954 x 10 ohms 

2 2,500 2,500 3,000.0089 R(2)=3.0000089 x 10 ohms 

3 250 250 399.99882 R(3)=3,9999882 x 10 ohms 

4 15 15 19.999939 L(1)=1.9999939 x 10 henr i e s  

5 1 3  43 40.00017 L(2)=4,0000117 x 10' henr i e s  

6 8,000 8,000 9,999 e 9774 C(l)=1,00000226 x f a r a d s  
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TABLE 4-2 

RESULTS OF COMPUTER SOLUTION OF THIRTEEN EQUATIONS 

n - Run 11 

32OO(J-12) 1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

1 2  

13 

Corresponding E l e c t r i c a l  
'n ( low) 'n(up) - n Component Y 

3 1 80x10 
3 3 60x10 
3 4,50xlO 
3 2 .70~10  
2 4 .50~10-  
1 4 .50~10 

1 

1 
3.60~10 

2,7OxlO 
3 9.00090009x10 

1 , 0 7 9 9 1 3 6 1 ~ 1 0 ~  

1 e 35135'135x10~ 
4 1.80180180~10 

4 

4 

4 

4 

3 

2 

2 

2 

2 

2 

5 

5 

5 

1.OOxlO 

1 e 00x10 

1 00x10 

1.OOxlO 

1 9 00x10 

1.OOxlO 

1.OOxlO 

1 eoox10 

1 e 00x10 

1 .oox10 

1.OOxlO 

10 00x10 

1.OOxlO 

3 .16134118~10~ 

1 .O6913525x1O4 

3 e 25326080~10~  

1 I) 1 2 2 3 8 5 7 4 ~ 1 0 ~  

5.00 x 10 

8 .60235493~10~ 

1 .60370290~10~  

2.42838392~10' 
1 1.1238573~10 

4 .2279636~10~  
4 3,20740568~10 

2 e 9 3 9 7 0 0 4 5 ~ 1 0 ~  

7 .48257161~10~ 

2 

3 R(1)=3,16134118 x 10 ohms 

R(2)=1.06913525 x lo4 ohms 
B(3)=3,25326080 x 10 3 ohms 

3 R(h)=1,12238574 x 10 ohms 
2 R(5)=5,00 x 10 ohms 

L(1)=8,60235493 x 10 henries 

L(2)=1.60370290 x 10 henries 

L(3)=2,42838392 x 90 henries 

L(4)=1.1238573 x 10 henr i e s  

@(1)=2,36520480 x 10 f a r a d s  

C( 2)=3.11778458 x 10e5farads 

G(3)=3.40170713 x 10e5farads 

G (LL)=1 33643893 x 10-4f a rads  

1 

2 

1 

1 
OLL 
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NORTHRO? SPACE LABORATORES 

TABLE 4- 2 (Concluded) 

I 
I 

RESULTS OF COMPUTER SOLUTION OF THIRTEEN EQUATIONS 

Corresponding E l e c t r i c a l  
Y n Components Y 

Run # - n Yn( low) n (up 1 - 
3 3 

3 

3 3 

3 3 

R(5)=5.00x LO ohms 
1 1 

1 1 

1 1 

1 1 

4 

l .00x104 1.99999943~10 R ( l ) = l .  99999943 x 10 ohms 

2 3 .94~10  3 1 OOx104 3 9 9 9 9 9 9 8 4 ~ 1 0 ~  R( 2)=3.99999984 x 10 ohms 

1. OOx104 5,00000081x10 R (  3)=5 00000081 x 10 ohms 3 4 .96~10  

l,00x104 3.00000012x10 R(4)=3,00000012 x 10 ohms 4 2 .97~10  

5 5 . 0 0 ~ 1 0  

1 . 0 0 ~ 1 0 ~  4,99999885~10 L(1)=4.99999885 x 10 h e n r i e s  6 5 . 0 0 ~ 1 0  

1 . 0 0 ~ 1 0 ~  5.99999977~10 L(2)=5,99999977 x 10 h e n r i e s  7 6.00~10 

1 . 0 0 ~ 1 0 ~  4.00000098x10 L(3)=4000000098 x 10 h e n r i e s  8 4,OOxIO 

1 . 0 0 ~ 1 0 ~  3.00000012x10 L(4)=3000000012 x 10 h e n r i e s  9 3.00~10 

1. OOx102 1.00000031x10 C( 1)=9 e 99999688 x l o m 5  f a r a d s  10 l o  00x10 

11 1 . 2 0 0 4 8 0 1 9 ~ 1 0 ~  l.00x105 1 . 1 9 9 9 9 9 9 5 ~ 1 0 ~  C(2)=8,33333366 x f a r a d s  

12  1 . 4 9 9 2 5 0 3 7 ~ 1 0 ~  1, OOx105 1 , 4 9 9 9 9 9 4 2 ~ 1 0 ~  C ( 3 ) = 6  66666922 x f a r a d s  

13 2.00~10~ l.00x105 2.00000008x10 C(4)=4.99999980 x l o p 5  f a r a d s  

3 3200(5-18) 1 1 e 95x10 

3 

3 

2 

1 

1 

1 

1 

4 

2 2 1 . 0 0 ~ 1 0 ~  5 . 0 0 ~ 1 0  

4 
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A s  would be  expected, s o l u t i o n  of t h e  set of t h i r t e e n  equat ions  proved 

more d i f f i c u l t  than  t h e  set of s ix .  In a number of runs ,  no s o l u t i o n s  

were achieved. The b a s i c  problem appeared t o  be t h e  f a i l u r e  of t h e  Newton- 

Raphson method t o  converge wi th  reasonable  va lues  of V (a  va lue  of 100 

w a s  used).  

l i m i t  

4.2.3 Clus te r ing  of S e t s  of Roots 

It i s  of i n t e r e s t  t o  no te  t h a t  i n  both Table  h-1 and Table 4-2 

each ind iv idua l  r o o t  w i t h i n  one of t he  sets of r o o t s  i s  gene ra l ly  of t h e  

s a m e  o r d e r  of magnitude as  t h e  corresponding r o o t  i n  t h e  o t h e r  set of 

roo t s .  I n  t h e  course of t h e  study it w a s  observed t h a t  whenever one -set 

of  r o o t s  w a s  known, f ind ing  a second set w a s  more e a s i l y  accomplished, 

There appea r s  t o  be some tendency f o r  t h e  sets of r o o t s  t o  equat ions  of 

t h e  type  under i n v e s t i g a t i o n  t o  l lc luster l l  t oge the r  i n  a p a r t i c u l a r  reg ion  

i n  t h e  p-dimensional space def ined  by t h e  p unknowns. 

of s o l u t i o n s  t o  a p a r t i c u l a r  se t  of equat ions has ,been  found, t h e  disc.overy 

of  a second set  near  t h e  f i r s t  appears  l i k e l y .  

Thus, a f t e r  one set  
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5.0 CONCLUSIONS AND RECOMMENDATIONS 

Based on t h e  r e sea rch  e f f o r t  t o  da te ,  t h e  conclusion i s  reached t h a t ,  of 

t h e  numerical  methods considered,  a a m b i n a t i o n  of t h e  Freudenstein-Roth 

technique and t h e  Newton-Raphson method r e p r e s e n t s  t h e  most s a t i s f a c t o r y  method 

of so lv ing  sets of nonl inear  a l g e b r a i c  equat ions c h a r a c t e r i s t i c  of f i l t e r  c i r c u i t  

a n a l y s i s .  The d i g i t a l  computer program, which has  been developed u t i l i z i n g  

t h i s  combination, i s  capable  of solving such equat ions ,  This  program al lows 

cons ide rab le  leeway i n  s e l e c t i o n  of i n i t i a l  escimates  of t h e  unknowns, but  as 

t h e  number of unknowns increases ,  t h e  amount of leeway decreases .  

of equat ions  under s tudy t h e r e  i s  some tendency toward sets of r o o t s  c l u s t e r i n g  

toge the r .  

f a c i l i t a t e  discovery of a2other  s e t .  

For t h e  type  

Thus, ob ta in ing  one set  of r o o t s  t o  a set  of equat ions  t ends  t o  

The equat ions  which were solved by t h e  program w e r e ,  a s  a l r eady  descr ibed ,  

c h a r a c t e r i s t i c  of f i l t e r  c i r c u i t  ana lys i s .  The program, however, w i t h  only 

minor mod i f i ca t ion  appears  a p p l i c a b l e  t o  any set on non l inea r  a l g e b r a i c  equat ions.  

Fu r the r  numerical  re f inements  t o  t h e  p re sen t  technique a s  descr ibed  i n  

r e f e r e n c e  1 2  appear f e a s i b l e .  Also ,  a study of t h e  e f f e c t s  of t h e  use of 

s t a n d a r d  o r  r e a d i l y  a v a i l a b l e  incrementation f o r  a l l  c i r c u i t  components, t o  

approximate t h e  numerical  va lues  of t h e  r o o t s  t o  t h e  equat ions,  i s  warranted. 

The recommendation i s  made t h a t  t h e  research  e f f o r t  be cont inued i n  accordance 

w i t h  r e f e r e n c e  12  i n  o rde r  t h a t  t he  t r u e  va lue  of t h e  d i g i t a l  computer program 

and t h e  numerical  procedures  contained w i t h i n  it may be e s t a b l i s h e d ,  
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N 0 RTH RO P SPACE L ABO RATORES 

APPENDIX A 

Source Program 

The source program which fo l lows  is  p resen ted  i n  two ve r s ions .  The f i r s t  

of these is w r i t t e n  i n  F o r t r a n  I1 and i s  s u i t a b l e  f o r  running on t h e  1BM 1620, 

SDS 930, and CDC 3200 d i g i t a l  computers. 

F o r t r a n  IV and i s  designed f o r  use w i t h  t h e  IBM 7094 d i g i t a l  computer. 

d e s c r i p t i o n  of  a l l  sub rou t ines  is presented i n  Appendix B. A complete 

d e s c r i p t i o n  of a l l  i n p u t s  and ou tpu t s  a r e  provided i n  Appendix C, 

diagram of the program i s  presented  i n  F igure  3-1, 

The second v e r s i o n  i s  w r i t t e n  i n  

A 

A flow 



A - l  Fortran I1 Source Program 

r 
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I 'r : 

i 
I 
I 
I 
I 
I 
I 
I 

SYSTEM OF N SIMULTANEOt lS NONLINEAR EQUATIONS 
DIMENSION I M A X ( 6 ) , F ( 6 ) ~ % ( 6 ) , C ( 6 ) , K ( 6 , 4 , 2 ) , F X O R I G ( b ) , X l ( 6 ) ~ D E L X ( 6 ) ,  

0 F X ( 6 ) , D F X ( 6 , 6 ) , S U h ( 6 ) , ~ S U M ( 6 , 6 ) r P ( b , 6 ) , A ( 6 , 6 ) , R ( 6 ) ,  
I A O R I G ~ 6 ~ , P ~ I ~ 6 ~ ~ P T O L ~ 6 ~ ~ F L ~ 6 ~ ~ F C ~ 6 ~ r F X I [ 6 ~ ~ F X L I M ~ 6 ~ ~  
M x G U E S ( ~ ) , L M A X ( ~ )  

1 0 0  F O R M A T  ( / / 4 H  N A = , I 4 / )  
1 1 0  F O R M A T ( / 1 6 H  S INGULAR M A T R I X / )  
1 2 0  FORMAT (2014) 
1 3 0  FORYAT ( Z X l O H I N P U T  D A T A / / 2 1 H  MAXIMUM NO. OF STEPS,3X,14/16H NUMBER 

1 OF S T E P S 1 8 X , 1 4 / 2 0 H  T I M E S  THROUGH S I M E Q , 4 X , I 4 / l S H  CONSTANT TERMS/ )  
1 4 0  F O R M A T  ( / 3 2 H  COMMENCING COEFFIC IENT APPROACH) 
150 FORMAT (/3X5HFXLIM/(6(4XE16.8)))) 

2 1 0  F O R M A T  1 6 ( 4 X E 1 6 . 8 ) )  
230 FORMAT ( 8 E l O . O )  
2 4 0  FORMAT ( b E 1 2 . 5 )  

180 FORMAT ( 6 H  G R I D = , I 4 , 3 X , 4 H N O S = r I 4 )  

250 FORMAT ( 3 X 3 H  H(,I2r2~)=,€16,8,2X4HOHMS,5X3H L ( r I 2 r 2 H ) = r E 1 6 . 8 . 2 X  
F7HHENRIES,SX3H C(,I2r2H)=,f16.8,2X6HFARADS) 

260  F O R M A T  (~8X2HL(,I2,2H)=,El6.8,2X7HH€NRIES~6X2HC(,I2,2H)=~El6~6,2X 

2 7 0  FORMAT ( 7 3 X 3 H  C(,I2,2H)=,E16,8,2X6HFARADS) 
280 FORMAT ( 3 7 X 3 H  C(,I2,2H)=,E16.8,2X7HHENRIES) 
290 FORMAT ( 3 X 3 H  R ( , I 2 , 2 H ) = , € 1 6 . 8 , 2 X 4 H O H M S , S X 3 H  L ( , I 2 , 2 H ) = , E 1 6 . 8 , 2 X 7 H H  

3 0 0  FORMAT ( 3 X 3 H  R(,I2,2H)=,E16,8,2X4HOHMS) 
3 1 0  FORMAT ( 3 X 3 H  R(,I2,2H)=,E16*8,2X4HOHMS,4lX3H C(,I2,2H)=,E16.8,2X6H 

F6HFARADS)  

F E N R I E S )  

FFARADS)  
320 F O R M A T  ( / 1 0 H  V A R I A B L E S / )  
330 FORMAT ( / / 7 2 H  ALL R U O T S  I N  THE FOLLOWING SET LIE W I T H I N  THE P H Y S I C  

3 4 0  FORMAT ( 4 9 H  USING T H I S  SET OF ESTIMATES, NO ROOTS WERE FOUND/ / )  
1 A L  L I M I T S  S P E C I F I E D / / )  

350 FORMAT ( / 7 5 H  THE F O L L O W I N G  SET OF ROOTS DO NOT LIE W I T H I N  THE PHYS 
F I C A L  L I M I T S  S P E C I F I E D / )  

360 FORMAT ( /2I)H RANGE FOR V A R I A B L E S / 3 X 6 H F X O R I G / ( 6 ( 4 X E l 6 ~ 8  1 ) )  
3 7 0  FORMAT ( / 1 1 H  THERE AHE 9 1 2 , 1 5 H  EQUATIONS A N D  , 1 2 1 2 4 H  UNKNOWNS,CONS 

F I S T I N G  OF , 12 ,16H R E S I S T A N C E ( S ) ,  , 1 2 , 1 9 H  INDUCTANCE(S),AND r I 2 , 1 6 H  
0 C A P A C I T A N C E ( S ) . )  

380 F O R M A T  ( 8 5 H  THE LOWER ROUNDARIES FOR T H E  RESISTANCES, THE INDUCTAN 
F C E S ,  AND THE CAPACITANCES A R E  , 2 ( € 1 6 . 8 r 2 W ,  ) / 5 H  AND ,El6,8,lw, 48H 
0 RESPECTIVELY, WHILE T H E I R  UPPER BOUNDARIES ARE ,2(E16.6,2HI ),4HA 
HND / l X E 1 6 . 8 , 1 4 H  R E S P E C T I V E L Y . )  

READ 1 2 0 ,  M A X N O S , N O S , K K , J M A X , N M A X , I Z M A X I " , N L , N C , N O R , M R  
READ 1 2 0 ,  ( I M A X ( J ) , J = l , J M A X I  
READ 1 2 0 ,  ( L M A X ( J ) , J = l , J M A X )  
READ 2 4 0 ,  ( F ( J ) r J = I r J M A X )  
R€AU 2 3 0 , ( P T O L ( N ) , N = l , N M A X )  
READ 2 3 0 ,  X R M I N , X L M I N , Y C M I N , X R M A X , X L M A X , X C V A X  
READ 2 3 0 ,  ( F X O R I G ( N ) , N = ~ , N M A X ) , ( F X L I M ( N ) , N = ~ , ~ M A X )  
READ 2 4 0 r ( C ( M ) , M = l , N W )  
READ 2 3 0 ,  T X  
DO 53 J= l ,  J M A X  

L J M A X = L M A X ( J )  
IJMAX=IMAX(J) 

53 READ 1 2 0 ,  ( ( K ( J , I , L ) , L = l , L J M A X ~ , I = l , I J M A X )  
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~ NNOSzNOS 
P H I N T  130,  MAXNOS,NOS,KK 
P R I N T  210, ( F ( J ) , J = l , J M A X )  

I P R I N T  360, F X O R l G  
I .  
I P R I N T  150, F X L I M  

P H I N T  370, JMAX,NMAX,NR,NL ,NC 
P R I N T  3 8 0 ,  XRMIN,XLMIN.XCMIN,XRHAX,XLMAX,XLMAX,XCf lAX 
I F  ( F X O f ? I G ( l ) - F X L I M ( 1 ) )  331,3321331 

I 

I 3 3 1  CALL ES T I M ( NM A x , ,JM A X , KF4, N L  , NOR, T x , I M A X  a L M A  X I  F , C , F X O R  I G FIYLIM c Y1 

332  P R I N T  3 2 0  
P R I N T  210, ( F X ( N ) , N = ~ , N M A X )  
N A = l  

t F X )  

DO 205 M=l,NMAX 
I F  ( Y - N R )  206,206,207 

207  C C M ) = O .  
206 Nf?M=NR+M 
205 X ( M ) = F X ( ~ ) - C ( M ) * F X ( N R M )  

P R I N T  1 4 0  I 5 1  P R I N T  1 0 0 ,  NA 
DO 4 8  I = l , N M A X  
X G U E S ( I ) = X ( I )  

4 8  X l ( I ) = X ( I )  
I G R I D = l  

4 7  LL=O 
ANOS=NOS 
KSW TCH=O 
LSWTCH=O 
NS=O 

I 

i 
I 
I 5 4  P R I N T  18O,(IGRID,NOS) 
I 60  D O  3 I = l , N M A X  

3 D E L X ( I ) = O .  
C A L C U L A T E  P A R T I A L S  

I F ( M - N R ) 5 , 5 , 6  
DO 4 M = l r N M A ) r  

6 C ( M ) = O .  1 5 NRM=NR+M 
F X ( M ) = C ( M ) * X ( N R M ) + X ( M )  
DO 7 N = l , N M A X  
D F X ( M , N ) = O .  

8 D F X ( H , N ) r I .  
I F ( M - N ) 9 , 8 , 9  

I 
I 

C 

G O  T O  7 
9 I F ( N - ( N H + M ) ) 7 , 1 0 , 7  

1 0  D F X ( M , Y ) = C ( M )  
7 C O N T I N U E  I 4 C O N T I N U t  

DO 11 J = 1 , J M A X  
S U M ( J ) = - F ( J )  
DO 1 2  N=l ,NMAX 

I J M A X = I M A X ( J )  

T(I)=i. 

1 2  P S U M ( J , N ) = O .  

DO 1 3  I = l , I J M A X  
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I- 

I 
I 
I 
I 

16 

1 5  
1 3  

1 7  

2 0  

1 9  

18 
22  

23 
2 1  

2 4  
25 
30 

1 

125 

29 
28 
11 

32  

3 1  

3 3  

35  

61 

D O  16 L=l ,LJMAX 
N K = K ( J , I , L )  
P( I ,N)=P( I ,Y)+T( I ) *DCX(NK,N) /FX(NK,N) /FX(N~)  
C A L C U L A T E  T O T A L  P A R T I A I - S  
P S U M ( J , N ) = P S U M ( J , N ) + P ( I , N )  
S U M ( J ) = S U M ( J ) + T ( I )  
DETERMINE LARGEST C O E F F I C I E N T  OF EACH E Q U A T I O N  
I F ( N A - 1 ) 1 7 , 1 7 , 1 8  
T X = O .  
I J M A X = I M A X I J )  
D O  1 9  I = l , I J H A X  

T X = T ( I )  
NX= I 
C O N T  I NU€ 
G O  T O  2 1  

N X = I H A X ( J )  
GO T O  2 1  

I F ( T ( I ) - T X ) 1 9 , 1 9 r 2 0  

I F ( I M A X ( J ) + l - N A ) 2 2 , 2 3 , 2 3  

N X Z N A - 1  

CALCULATE C O E F F I C I E N T S  
A O R I G ( J ) = ( ( - S U H ( J ) ) / T ( ~ X ) ) + l .  

I F ( K S W T C H - 1 ) 2 4 , 2 5 , 2 5  

I F ( L S W T C H - 1 ) 3 0 , 2 9 , 2 9  
O R I D = I G R I D  
I F  ( A O R I G ( J ) )  1,125~125 
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I .  
1 .  

I 
I 
I I 

I 
I 
i 

I 
i 
I 
I 
I 
I 
I 
I 
I 

I 

I 

I 

NS=O 
LSW TCH=O 
K S k T C H = K S W T C W + l  
IGRID=IGHID*l 
IF(IGRID-NOS-1)36,52,5~ 

36 DO 26 N = l , N M A X  
26 X l ( N ) = X ( N )  

G O  T U  54 
40 KSWTCW=KSWTCW+l 

LSWTCH=LSWTCH+l 
IF (NS-KK )37,43,43 

37 DO 55 I = l , N M A X  
55 X(I)=X(I)+DELX(i) 

43 NOS=2*(NOS+l-IGRID) 

44 DO 45 I=l,NMAX 
45 X ( I ) = x l ( I )  

I GR I D = l  
GO T O  47 

38 NOS=hJNOS 
P R I N T  340 

G O  TO 60 

IF(~OS-MAXNOS)44,38,38 

DO 50 IZ1,NMAX 
50 X(I)=XGUES(I) 

211 N A = N A + l  
IF(NA-l-IZMAX)51,49.49 

49 Y R = O  
C A L L  F C O N  ( H A X N O S , N O ~ , K K , J M A X , N M A X , N R , L M A X , I M A X I F I P T O L , X , K , C , X G U E s  

GO T O  (112,52),IERR 
F s F X  9 I E R R  1 

52 IJ=O 
DO 76 I=l,NR 
IF ( X ( I ) - X R M I N )  99,76,76 

99 IJ=IJ+1 
76 C O N T I N U E  

D O  77 I=l,NR 
IF ( X ( I ) - X R f l A X )  77,77,101 

101 I J = I J + l  
77 C O N T I N U E  

NSPl=NR+1 
N H P N L = N H + N L  
DO 102 I=NRPl,NRPNL 
IF ( X ( I ) - X L M I N )  103,102,102 

103 I J = I J + 1  
102 C O N T I N U E  

D O  104 I=NRPl,NRPNL 
I F ( X ( I ) - X L M A X )  104,104,105 

105 I J = I J + 1  
104 C O N T J N U E  

DO 106 I t N C C n N M A X  
x ( I ) = l . / X ( l )  
I f  ( X ( I ) - X C M I N )  107,106,106 

107 I J = I J + 1  
106 C O N T I N U E  
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I 
I 
I 
i 
I 
I 
I" 
I 
I 
I 
I 
I 

SUBROUTINE FCON ( M A X ~ O S , N O S I K K , J M A X I N M A X , N R ~ L M A X ~ I M A X I F I P T O L ~ X , K ,  
F G,XGUFS,FX,IERR) 

D X O R I G ( 6 ) , X l ( h ) , F X ( 6 ) , D F X ( 6 r 6 ) , P S U M ( 6 , 6 ) , P ( 6 , 6 ) 0 T ( 6 ) ,  
I P H I ( 6 ) , P T O L ( 6 ) r F F ( 6 ) 0 X G U ~ S ( 6 ) , L M A X ( 6 )  

D I M E N S I O N  I M A X ( 6 ) , F ( 6 ) . f O R G  (6)0X(6)rDELX(6),K(6,4,2)0C(6),SUM(6)0 

1 1 0  FORMAT( /16W S I N G U L A R  M A T R I X / )  
1 8 0  F O R M A T  (6H G R I D = , I 4 r 3 X . 4 H N O S = , I 4 )  
320 FORYAT ( / / 2 9 H  COMMENCING CONSTANT APPROACH//) 

P R I N T  320 
I E R R = 1  

X ( I , = X G U E S ( I )  
1 X l ( I ) = x ( I )  

I GR I D = l  
33  KSWTCH=O 

LSWTCH=O 
ANOS=NOS 
NS=O 

DO 1 I = l r N M A X  

22 P R I N T  18O, IGRID,NOS 
4 3  DO 2 I = l r N M A X  

2 D E L I ( I ) = O .  
CALCl lLATE P A R T I A L S  

I F ( M - N R ) 4 , 4 , 5  
DO 3 M=l,NMAX 

5 C ( M ) = O .  
4 NRM=NR+M 

F X ( M ) = C ( M ) + X ( N R M ) + x ( M )  
DO 6 N = l r N M A X  
D F X ( M * N ) = O .  
I C  ( M - N  18, 7,8 

7 D F X ( M , N ) = 1 .  
G O  T O  6 

8 I F ( N - ( N R + M ) ) 6 , 9 , 6  
9 D F X ( M , N ) = C ( M )  
6 CONTINUE 
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3 C O N T I N U t  
DO 1 0  J = l , J M A X  
SUM( Jl = O  . 
DO 11 N=l,NMAX 

I J M A X = I M A X ( J )  
DO 1 2  I = l , I J M A X  
T(I)=i. 
L J M A X = L M A X ( J )  
D O  13 C=l ,LJMAX 

I 

I 
11 PSUM(J ,N)=O.  

N K = K ( J , l r L )  
1 3  T ( I ) = T ( I ) * F X ( N K )  

DO 14 N=l ,NYAX 
P ( I , N ) = O ,  
DO 1 5  L = l , L J M A X  
N K = K ( J i I r L )  

15 P( I , N ) = P ( I , N ) + T ( I ) * D F X ( N K , N ) / F X t ~ K )  
C C A L C U L A T E  T O T A L  P A R T I A I  s I 14 P S U M ( J , ~ ) = P S U M ( J , N ) + P ( l r N )  

1 2  S U M ( J ) = S U M ( J ) + T ( I )  
I F ( K S N T C H - 1 ) 2 8 , 2 9 , 2 9  
CALCULATE CONSTANT TERM i c  

I 

I 
I 
I 
I 
I 
I 
I 

I 

i 

i 
I 
I 
I 

2 8  FORG ( J ) = S U M ( J )  

40 GRID=IGRID 

50 F F ~ J ) = F ( J ) * * ( G R I D / A N O S ) * ~ - ~ A B S ~ F O ~ G ( J ) ) + ~ . + F ~ J ~ ~ * * ~ ~ . ~ G R I D ~ A N O S ~ ~  
1+2. +F( J )  

29 IF(LSWTCH-l)90,4lr41 

I F  ( F O R G  ( J ) )  5 0 ~ 5 1 ~ 5 1  

G O  T O  4 1  
5 1  F F ( J ) = F ( J ) * * ( G ~ I D / A N O S ) * F O R G ( J ) * * ( ~ . - G R I D / A N O S )  
41 P H I ( J ) = - S U M ( J ) + F F ( J )  
1 0  CONTINUE 

KSWTCH=O 

I E = I f + l  
NS=NS+1 
G O  T O  (16,17),IE 

1 7  P R I N T  1 1 0  
G O  T O  23  

16 D O  18 I = l , N M A X  

18 CONTINUE 

20 X ( I ) = X ( I ) + D E L X ( I )  

CALL  SIMEQ (PSUM,DELX,PHI,JMAX,IE) 

I F ( A B S ( D E L X ( ~ ) ) - P T O L ( I ) * A ~ S ~ X ~ I ) ) ~ ~ ~ P ~ ~ ~ ~ ~  

DO 2 0  I = l , N M A X  

00  3 4  I = l , N M l r X  
NR I =NR+ I 

NS=O 
KSW T C H = K S W T C H + l  
LSWTCH=O 
I G R  I D= I G R I  D+l 

3 4  F X ( I ) = C ( I ) * X ( N R I ) + X ( I )  

I F  (IGRID-NOS-1) 4 2 , 9 9 , 9 9  
9 9  I E R W = I E R R + 1  

RETURN 
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I 

I 
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I 
I 

I 

I 

I 

I 
I 

I 
I 
I 
I 
I 
I 
I 
I 

1 

4 2  D O  30 I = l , N M A X  
30 X l ( I ) = X ( I )  

GO T O  22 
1 9  K S W T C H = K S W T C H + l  

L S W T C H = L S W T C H + l  
I F ( N S - K K ) 2 4 , 2 5 , 2 5  

2 4  DO 26 I = l , N M A X  
26  X ( I ) t X ( I ) + D E L X ( I )  

25 N O S : 2 * ( N O S + l - I G R I D )  
G O  T O  4.5 

I F ( N O S - M A X N D S ) 3 1 , 2 3 , 2 3  
3 1  DO 32  I = l , N M A X  
3 2  X ( I ) = X l ( I )  

I G R I D = l  
G O  T O  33 

NRM=NR+tU 
23 D O  35 N = l , N M A X  

35 F X ( N ) = C ( N ) * X ( N R M ) + X ( N )  
36 RETURN 

END 

F X ( K ) = F X O R I G ( K ) ~ E X P ( A P * A L O G ( F X L I M ( K ) / F X O R I G ( ~ ) ) / ( X N O S - ~ . ) )  
DO 8 M = l r J M A X  
S U M ( M ) = - F ( M )  
I M M A X = I H A X ( M )  

T(J)=l. 
L M M A X = L M A X ( M )  
DO 1 0  N = l , L M M A X  

DO 9 J Z l r I M M A X  

r J K = J K  ( M ,  J s N 1 
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1 0  T ( J ) = T ( J ) + f X ( N K )  1 ~ 9 S U M ( M ) = S U M ( M ) + T ( J )  
8 P H I ( M ) = - S U M ( M )  

I 11 A P W I = A P H I + A B S ( P H I ( N ) )  1 22  If ( A P H l - A P H I l )  12,12,13 
1 2  A P H I l = A P W I  

I DO 19 N=l ,NMAX 
19 X l ( N ) = F X ( N )  1 2 CONTINUE 

1 G O  T O  2 6  

A P H I = O .  
D O  11 N = l ,  J M A X  

I F  ( 1 - 1 )  22 ,12822 

1 3  D O  2 6  N=l ,NMAX I 28 F x ( N ) = x ~ ( N )  
2 6  I F  (JJ-1)  1 8 , 1 7 , 1 8  
18 C H X ( K ) - A B S ( A L O G ( X P ( K ) / X 1 0 ) ) )  

T O L ( K ) = T X + A L O G ( f X L I M ( K ) / F X O H I G o ) 7 ( X N O S - l . ~  
I F  ( C H X ( K ) - T O L ( K ) )  2 1 , 2 1 , 2 3  

I F  ( L X - N H A X )  3 0 , 2 4 , 2 4  

I 
i 
' 2 1  L X = L X + l  

23 LX=O 

1 7  DO 1 4  N=l ,NMAX 
1 30 P R I N T  1 1 0 ,  LX 

I 1 4  X P ( N ) = F X ( N )  
1 CONTINUE 

JJ=JJ*l  
G O  T O  20 I 2 4  P R I N T  1 1 0 ,  LX 
DO 25 I = l , N H A X  ' 25 F X ( I ) = X P ( I )  
RETURN I END 

- -  

S U B R O U T I N E  SIMEQ (A,X,R,N, IERR) I 
S O L U T I O N  OF S I M U L T A N k O l l S  L I N E A R  FQUATIONS 
D I M E N S I O N  A ( 6 , 6 ) , X ( b ) , B ( 6 ) r I N D ( 6 )  
DO 1 I = l , N  

1 I N D ( I ) = I  
DO 15 K = I , N  
SEARCH A R R A Y  FOR LARGEST VALUE 
I X = Y  
J X = Y  
DO 3 I = K , N  
D O  3 J = K , N  
IF(ARS(A(I,J))-ABS(A(IX,JX))) 3,382 

I C  
I C  

I 
I 

2 I X = I  
JX=J  

3 C O N T I N U E  

51 



I F  ( A ( I X , J X ) )  5 r 4 t S  I 4 I t R R = l  
R E T U R N  

EXCHANGE R O W S  

T E M P = A ( I X , J )  

5 IF ( I X - K )  8 , 6 , 6  

6 DO 7 J = K , N  

A ( I X , J ) = A ( K , J )  

IC 
I 7 A ( Y s J ) = T E M P  

T E M P = B ( I X )  
B(IX)=B(K) 
B ( H 1 =TEMP 

EXCHANGE COLUMNS 
8 IF ( J X - K )  1 1 , 1 1 , 9  

9 DO 10 I =  1 , N  
T E M P = A ( I , J X )  
A ( I , J X ) = A ( f , K )  

1 0  A ( I , K ) = T E M P  
I N D E X = I N D ( J X )  
IND( JX 1 = I N D (  K 1 
I N D ( K ) = I N D E X  1 11 P I V O T = A ( K , K )  
DO 1 2  J = K , N  

B ( K ) = B ( K ) / P I V O T  
DO 15 I = l , N  1 IF ( I - K )  13~15,13 

I 

I 12 A ( K , J ) = A ( K , J ) / P I V O T  

13 T E M P = A ( I , K I  
DO 1 4  J = K s N  

1 4  A ( I , J ) = A ( I r J ) - A ( K , J ) * T E M P  
B ( I ) = B ( I ) - B ( K ) * T E M P  

I I 
1 15 C O N T I N U E  

DO 1 6  I = l , N  
I N D E X = I N D ( I )  

IERR=O 
RETURN 

1 6  X ( I N D E X ) = B ( I )  I 
E N D  I 
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A-2 Fortran IV Source Program 

53 





I 
I 
I 

I 
I 
1 
I 
i I 

I 
I 
I 
I I 

I 
I 
I 
I I 
I 
I 

I 

r 

- 
55 





57 



I. 121 

1 1 3  
81 

82 

t33 

I 
I 

65 
0 4  

85 

07  

8 0  

89 

I I 
74 

31 
9 L  

58 



, .  

59 



I. 

60 





C I .  
I 

I 
I 

t 
I 
I 

I 
I 
I 
I 
I 
I 
I 
r I 

i 
I 

r 
62 



63  



64 



NORTHROP SPACE 1 ABOR ATORiES 

APPENDIX B 

Subroutines 

In  t h e  main program t h e  following subrou t ines  are used: 

ESTIM 

SIMEQ 

FCON 

Tine remainder of t h i s  appendix i s  devoted t o  d e s c r i p t i o n s  of t h e s e  subrout ines .  

B-1  ESTIM (Se lec t ion  o f  I n i t i a l  Es t ima tes )  

This subrout ine  i s  a technique f o r  ob ta in ing  a set  of e s t i r n a t e s . f o r  t h e  

v a r i a b l e s .  The range of i n t e r e s t  and t h e  number of increments t o  be taken  f o r  

each v a r i a b l e  a r e  i n  t h e  l i s t  of arguments of t h e  sub rou t ine  ESTIM, ( N - 1 )  of 

t h e  v a r i a b l e s  a r e  i e i d  a t  a logarithmic mean of t h e  g iven  range, whi le  t h e  Nth 

v a r i a b l e  i s  v a r i e d  accord ing  t o  t h e  number of increments. 

r epea ted  f o r  each v a r i a b l e ,  wi th  each of t h e  prev ious  v a r i a b l e s  main ta in ing  

t h e i r  genera ted  va lue  r a t h e r  than t h e i r  mean va lue ,  as desc r ibed  i n  Sec t ion  2.4. 

This  process  i s  

The N v a r i a b l e s  are subjec ted  t o  t h i s  process  r epea ted ly  u n t i l  each l ies  

w i t h i n  a d e s i r e d  t o l e r a n c e  of t h e  preceeding corresponding v a r i a b l e .  

N v a r i a b l e s  s a t i s f y  t h i s  requirement, t hey  a r e  r e tu rned  a s  t h e  d e s i r e d  set of 

e s t i m a t e s .  

When a l l  

C a l l i n g  Sequence 

CALLESTIM (YXAX, JEIAX, N R ,  NL, N g R ,  TX,  I M A X ,  MAX, F ,  C,FX@RIG,FXLIM, JK,FX) 
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where 

NMAX 

JMAX 

NR 

NL 

N m  

TX 

IMAX 

MAX 

F 

C 

SPACE LABORATORIES 

- t h e  number of v a r i a b l e s  

- t h e  number of equat ions i n  t h e  system 

- t h e  number of r e s i s t a n c e s  

- t h e  number of inductances 

- t h e  number of increments t o  be taken  wi th in  t h e  s p e c i f i e d  range 

- t h e  to l e rance  used t o  determine t h e  a c c e p t a b i l i t y  of each v a r i a b l e  

- maximum number of terms p e r  equat ion  

- maximum number of f a c t o r s  pe r  term 

- t h e  cons tan t  va lues  of each equat ion  

- t h e  l i n e a r  r e l a t i o n s h i p  between t h e  inductances and t h e i r  
corresponding r e s i s t a n c e s  

FXORIG - t h e  lower boundary of  the range f o r  t h e  v a r i a b l e s  

FXLIM - t h e  upper boundary of the range f o r  t h e  v a r i a b l e s  

J K  - t h e  subscr ip ted  s u b s c r i p t s  of each v a r i a b l e ;  t hese  desc r ibe  t h e  
equat ions  wi th in  t h e  sys tem 

FX - t h e  o u t l e t  f o r  t h e  generated estimates. 

B-2 SIMEQ (Simultaneous Equation Solver )  

Th i s  r o u t i n e  employs a Gaussian technique of reducing a c o e f f i c i e n t  matrix 

by t h e  p i v o t a l  method. 

r e s u l t i n g  from t h e  main program. 

used a s  t h e  p i v o t i n g  element. 

message i s  r e tu rned ,  p r i n t e d  ou t ,  and t h e  program proceeds as ind ica t ed  i n  

F igure  3-1, 

The elements themselves are p a r t i a l  d i f f e r e n t i a l s  

The l a r g e s t  numerical  element is sought and 

Should t h i s  l a r g e s t  element be t r i v i a l ,  an e r r o r  

. 
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Calling Sequence 

CALL SIMEQ ( A ,  X, B, N, IERR) 

I 
I 

I 
I 
i 

I I 
I 
I 
I 
I 
I 

I 
I 
I 
I 

where 

A - the N x N array in which the elements of the matrix are stored 
X - the resulting column matrix 

B - the (N+1) column array 

N - the number of equations t o  be solved 

IERR - the control indicating singular matrix if IERR=l. 

B-3 FCON (Constant Approach) 

Like the main program this approach toward solving the system of nonlinear 

equations employs the Newton-Raphson and Freudenstein-Roth methods. 

difference lies in the fact that the constant terms are incremented (or decre- 

mented) rather than the leading coefficient of each equation. This method may 

be used whether or not the coefficient approach fails. The original set of 

estimates obtained from ESTIM is used, and all the input data are recalled. 

The 

Calling Sequence 

CALL FCgN (MAXNQS, NgS, KK, JMAX, NMAX, NR, LMAX, I M A X ,  F, PTgL, X, K, Cy XGUES, 

FX, IERR) 

where 

MAXNgS - maximum number of incrementing (or decrementing) steps to be taken 

NgS - the initial number of steps to be taken 
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KK - maximum number of t i m e s  allowed f o r  subrout ine  SIMEQ t o  be c a l l e d  

JMAX - number of equa t ions  

NMAX - number of v a r i a b l e s  

NR - number of  r e s i s t a n c e s  

WAX 

IMAX - maximum number of terms p e r  equat ion  

- maximum number of f a c t o r s  p e r  term 

F - constant terns of each equat ion 

PT@L percentage of t o l e rance  allowed on each change of each v a r i a b l e  

X - t h e  v a r i a b l e s  

K subscr ip ted  s u b s c r i p t s  of each v a r i a b l e  which desc r ibes  t h e  system 
of  equat ions  

C - l i n e a r  r e l a t i o n s h i p  between inductances and t h e i r  corresponding 
res f s t a  nce s 

XGUES - o r i g i n a l  see: of es t imates  

FX - o u t l e t  €31 r o o t s ,  o r  last  set of  v a r i a b l e s  

'IERR - c,ontroll for determining i f  r o o t s  are found 
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APPENDIX C 

Desc r ip t ion  o f  Computer Inpu t s  & Outputs 

6-1 Input Nomenclature 

A l l  i n p u t s  a r e  made through t h e  f a m i l i a r  FORTRAN c o m n d s .  The i n p u t s  f o r  

t h e  va r ious  subrout ines  a r e  r ead  i n t o  t h e  main program. The fo l lowing  i s  an 

a l p h a b e t i c  l i s t i n g  and a d e s c r i p t i o n  of each inpu t  i t e m  used. The symbol i n  

b racke t s  fo l lowing  each d e s c r i p t i o n  r e f e r s  t o  t h e  nomenclature used i n  Sec t ion  2.0. 

Constant f o r  e s t a b l i s h i n g  l i n e a r  r e l a t i o n s h i p  between r e s i s t a n c e s  

and inductances ,  (1 I M I, NR). [K,] 

The c o n s t a n t  terms of each equat ion ,  ( 1  L J 5 J M A X ) .  [F j ]  

Upper l i m i t  on range of v a r i a b l e s  used t o  o b t a i n  estimates, 

( 1  I N  L. N?AAX). ['n(up> 1 

Lower  l i m i t  on range of v a r i a b l e s  used t o  o b t a i n  estimates, 

(1 h N I NMAX), ['n ( low) 3 

Number of terms i n  each equat ion ,  (1 5 J I J M A X ) .  [ Q j ]  

Number of column arrangements t o  be used i n  t h e  c o e f f i c i e n t  approach. 

[Q I i m i  t 1 

Number of equa t ions  t o  be solved. [ p ]  

Subsc r ip t  f o r  each f a c t o r  [ l  1. L I LMAX(J)] of each term 

[ l  5- I 5 IMAX(J)] of each equat ion  (1 5 J .5 JMAX). [ r ( j , i , k ) ]  

69 



I 
I -  

I 

I 

MR 

NC 

NL 

NMAX 

NOR 

KK Maximum number of t i m e s  sub rou t ine  SIMEQ may be c a l l e d  f o r  each 

attempt a t  convergence. [ ' l i m i t  1 

Number of f a c t o r s  pe r  term p e r  equat ion ,  (1 J L JMAX). [ d j ]  

The maximum number o f  increments allowed i n  t h e  Freudenstein-Roth 

Technique. I ''1 i m i  t 

Input  op t ion  r e l a t i n g  t o  s ea rch  f o r  s a t i s f a c t o r y  roo t s .  I f  M R 4 ,  

t h e  computer w i l l  s t o p  a f t e r  one set of s a t i s f a c t o r y  r o o t s  have 

been obta ined .  I f  MR=l, t h e  computer w i l l  con t inue  searching  f o r  

r o o t s  u n t i l  IZMAX is reached. 

NOS 

NR 

PT@ L( N ) 

Number of v a r i a b l e s  r ep resen t ing  capac i tances .  [ w] 

Number o f  v a r i a b l e s  r ep resen t ing  inductances.  [VI 

Number of v a r i a b l e s  involved. [p ]  

Number of increments t o  be t aken  from FXORIG(N) t o  FXLIM(N) 

i n  s e l e c t i o n  of i n i t i a l  e s t ima te .  [wI 

Number of increments t o  be  used i n  varying t h e  c o e f f i c i e n t s  o r  

c o n s t a n t s  f o r  each equat ion  i n  t h e  Freudenstein-Roth technique. [VI 

Number of v a r i a b l e s  r ep resen t ing  r e s i s t a n c e s .  [ u] 

Maximum percentage o f  change i n  v a r i a b l e s  f o r  e s t a b l i s h i n g  

convergence i n  Newton-Raphson method ( 1  S N I NMAX). 
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TX Constant for determining convergence in selection of initial 

estimate of each variable. [Aa] 

XCMAX Maximum value variables representing capacitances can attain 

XCMIN Minimum value variables representing capacitances can attain 

XLMAX Maximum value variables representing inductances can attain 

XLMIN Minimum value the variables representing inductances can attain 

XRMAX Maximum value variables representing resistances can attain 

XRMIN Minimum value the variables representing resistances can attain 

\ 

C-2 Input Format 

The correct format €or the inputs already described is provided on the 

Fortran key punch forms which follow. 

involved are listed immediately below the Fortran symbol. The values correspond 

to the set of six equations and six unknowns presented in Appendix D. 

Representative values of the inputs 
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C-3 Output Nomenclature 

The f i r s t  da t a  p r i n t e d  o u t  are c e r t a i n  o r i g i n a l  input  da ta .  The Waximum 

No. of S teps"  r e f e r r e d  t o  is  MAXNOS; the  "Number of  S tepsr1  i s  NOS; and t h e  "Times 

Through SIMEQII i s  KK. 

s u b s c r i p t s  reading  from l e f t  t o  r i g h t .  Following t h e s e  terms t h e  range of 

i n t e r e s t  f o r  each v a r i a b l e  i s  e s t ab l i shed  by means of FXORIG(J) and FXLIM(J) 

which a r e  arranged i n  t h e  same manner a s  F ( J ) .  

i npu t  da t a  desc r ibes  t h e  number of equat ions  and unknowns, t h e  number of 

r e s i s t a n c e s ,  inductances,  and capac i tances  involved, and t h e  mini- and maximum 

va lues  of  such components. 

The Wonstan t  Terms1! are F ( J )  arranged i n  o r d e r  of 

The rest  of  t h e  p r i n t o u t  of 

After t h e  p r i n t o u t  of input  da t a ,  t h e  p r i n t o u t  is  designed t o  i n d i c a t e  t o  

t h e  computer o p e r a t o r  t h e  s t e p s  taken by t h e  computer i n  ob ta in ing  a so lu t ion .  

The terminology used i s  t h e  same a s  t h a t  a l r eady  provided i n  t h e  d e s c r i p t i o n  of 

i npu t  nomenclature wi th  t h e  fol lowing a d d i t i o n s :  

GRID The i t e r a t ive  s t e p  number i n  t h e  Freudenstein-Roth technique 

( 1  5 G R I D  5 NOS) 

Ix 

NA 

The counter  used i n  t h e  process  of s e l e c t i n g  i n i t i a l  e s t ima tes .  

When LX = NMAX t h e  s e l e c t i o n  process  is  complete. 

The counter  used i n  t h e  c o e f f i c i e n t  approach t o  i n d i c a t e  t h e  

arrangement of  terms i n  t h e  set of equat ions.  When NA=l,  t h e  

l a r g e s t  term i n  each equat ion i s  used as t h e  f i r s t  term. When 

NA=2, t h e  o r i g i n a l  order  of  terms as input  i s  used. When N k 3 ,  
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t h e  o r i g i n a l  f i r s t  term i n  each equat ion i s  exchanged wi th  t h e  

second term. When N A 4 ,  t h e  o r i g i n a l  f i r s t  term i s  exchanged 

wi th  t h e  t h i r d  term, e t c .  

The f i n a l  output  depends upon condi t ions  a r i s i n g  wi th in  t h e  program. Should 

a s a t i s f a c t o r y  set of r o o t s  (a set i n  which a l l  elements l i e  wi th in  t h e  phys ica l  

l i m i t s  s p e c i f i e d )  be obta ined ,  a statement i n d i c a t i n g  t h i s  f a c t  i s  p r i n t e d  o u t  

t o g e t h e r  wi th  t h e  r o o t s  appropr i a t e ly  denoted a s  r e s i s t a n c e s ,  capac i tances  o r  

inductances.  I n  t h e  case  i n  which roo t s  a r e  found but  a r e  not  acceptab le ,  a 

s ta tement  i n d i c a t e s  t h i s  f a c t  followed by a l i s t i n g  of t h e  va lues  of t he  

u n s a t i s f a c t o r y  roo t s .  

columns have been t r i e d ,  a s ta tement  i s  p r i n t e d  t o  t h i s  e f f e c t .  As a l r eady  noted 

t h e  program con ta ins  an op t ion  t h a t ,  i n  case  a set of r o o t s  a r e  found, t h e  process  

e i t h e r  s t o p s  o r  cont inues  searching using t h e  remaining of t h e  IZMAX columns. 

a s i n g u l a r  ma t r ix  i s  encountered i n  the  SIMEQ subrout ine ,  t h e  words IiSINGULAR 

MATRIX" are p r i n t e d  o u t ,  and t h e  computer proceeds a s  i t  would i f  no r o o t s  had 

been found, a s  i nd ica t ed  i n  Figure 3-1. 

If no s a t i s f a c t o r y  r o o t s  a r e  found by t h e  t i m e  a l l  IZMAX 

I f  

C-4 Sample Output 

The output  which fol lows is  based on t h e  input  da t a  previously presented  

i n  t h i s  appendix f o r  s i x  equat ions  and s i x  unknowns. 
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INPUT DATA 

i 

Y A X I M U M  N O ,  OF STEPS 1 0 0  
NUMBER OF STEPS 25 
TIMES THROUGH S I M E Q  2 0  
CONSTANT TERMS 

8.00000000E 02 1 , 6 4 0 0 0 0 O O E  05 8,40000000E 06 

ffANGE F O R  VARIABLES 
F X O A I G  

1 . 0 0 0 0 0 0 0 0 E  02 1 . O O O O D O O O F  02 1 . 0 0 0 0 0 0 0 0 E  0 2  

F X L I H  
1 . 0 0 0 0 0 0 0 0 E  0 5  1 . 0 0 0 0 0 0 0 0 E  0 5  1.00000000f 05 

THERE ARE 6 E Q U A T I O N S  A ~ D  6 U N K h O k N S , C O N S I S T I N G  OF 3 R E S I S T ,  
THE LOWER BOUNDARIES FOR T H E  R E S I S T b N C E S ,  THE INDUCTANCES, AND 
A N D  1.00000000E-11, RESPECTIVELYe WHILE T H E I R  UPPER BOUNDARJI 

1.50000000E-01 RESPECTIVELY. 

LX= 1 

i X =  2 

t x =  3 

L X =  4 

L X =  5 

L X =  6 

v AS 1 4 B L E S  

1 . o o O o o o o o E  02 1.0000@000F 02 1 . 0 0 0 0 0 0 0 0 E  0 4  



iPEC IF IED 

i N R I E S  C (  1)= 7.93524923E-05 F A R A D S  
!NRIES 
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i 
1- 
I 
1 
I 
I 
I 
I 
I 
1 
I 
I 
I 
I 
I 
i 
I 
I 
I 

NA= 2 

G R I D =  1 
ORID= 2 
ORID= 3 
GRID= 4 
G R I D =  5 
GRID= 6 
GRID= 7 
GRID= 8 
GRID= 9 
GRID= 10 
G R I D =  11 
ORID= 12 
G R I D =  13 
GRID= 14 
GRID= 15 
ORID= 16 
GR I D =  17 
GRID= 16 
GRID= 19 
GRID= 20 
GRID= 21 
ORID= 22 
GRID= 23 
G R I D =  24 
G R I D =  25 

NOS= 25 
N O S =  25 
NOS= 25 
N O S =  25 
N O S =  25 
NOS= 25 
NOS= 25 
NOS= 25 
NOS= 25 
NOS= 25 
N O S =  25 
NOS= 25 
NOS= 25 
NOS= 25 
N O S =  25 
N O S =  25 
NOS= 25 
NOS= 25 
NOS= 25 
NOS= 25 
NOS= 25 
NOS= 25  
NOS= 25  
NOS= 25 
N O S =  25 

ALL Q O O T S  I N  THE F O L L O W I N G  SET LIE W I T H I N  T H E  PHYSICAL L I M I T S  

R( l)= 2.53561570E 03 OHMS L( 1)= 2.800655ibE 01 W 
R (  2 ) =  2.13625371E 03 OHMS L (  2 ) =  2.84833827E 01 H 
R (  3)= 5.61731033E 02 O H M S  
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LIMITS SPECIFIED 

E 0 1  HENRIES 
E 0 1  HENRIES 
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I 
I 
I 
i 
I 

I 
j 
I t 

I I 
I 
I 
I 
I 
I 
I 
I 
I 
I I 

- ----- 
. - -  ----- ".+: -- - -%-"A - I -- - . j  

C O M M E N C I N G  COEFFICIENT APPROACH 

- -  . NA= 1 

GRID= 1 
GRID= 2 
GRID= 3 
GRID= 4 
G R I D =  5 
G R I D =  6 
GRID= 7 
G R I D =  8 
G R I D =  9 
GRID= 10 
G R I D =  11 
GRID= 12 
G R I D =  13 
GRID= 14 
GRID= 15 
G R I D =  16 
G R I D =  17 
G R I D =  18 
G R I D =  19  
G R I D =  20 
GQID= 21 
QRID= 22 
GRID= 23 
G R I D =  24 
G R I D =  25 

__ _ _  

NOS= 
NOS= 
NOS= 
NOS= 
N O S =  
N O S =  
NOS= 
N O S =  
NOS= 
NOS= 
NOS= 
Nos= 
NOS= 
NOS= 
NOS= 

. .Juos=. 
NOS= 
NOS= 
NOS= 
N O S =  
N O S =  
NOS= 
NOS= 
NOS= 
NOS= 

- __ 

- _--_ 

25 
25 
25 
25 

25 
25 
25 
25 
25 
25 
25 
25 
25 
25  
25 
25 
25 
25 
25 
25 
25 
25  
25 
25 

25 -_ 

ALL 900TS I N  T H E  FOLLOUING SET L I E  W I T H I N  THE P H Y S I C A L  

2 .53563727E 03 OHMS L( 1): 2,80868771 
2 .13621918E 03 OHMS L( 2 ) =  2.84629224 
5 . 6 1 7 3 7 4 7 0 E  02 OHMS 



3 e 4 0 0 0 0 0 0 0 E  0 7  1 . 6 0 0 0 0 0 0 0 E  0 4  1.2000000OE 06 

l e O O O O O O O O E  01 1 . b O O O O O O O E  01 1.00000000E-02 

1 . 0 0 0 0 0 0 0 0 E  0 4  1.00000000E 0 4  1.00000000E-05 

I N C E ( S ) ~  2 INDUCTANCE(S1,AND 1 CAPACITANCE(S). 

' S  ARE 2 * 2 0 O 0 0 0 0 O E  0 7 ,  3 . 5 0 0 0 0 0 0 0 E  02s AND 
THE CAPACITANCES ARE 2 , 4 0 0 0 0 0 0 0 E - 0 1 ,  5~00000000E-05, 

1e00000000E 01 1.000o0000E 01 1 . 0 0 0 0 0 0 0 0 E  03 
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I 

1 GRID= 1 NOS= 25 
GRID= 2 NOS= 25 
QRID= 1 NOS= 46 
GRID= 1 NOS= 96 
USING THIS SET OF ESTIMATES, NO R O O T S  WERE F O U N D  

NA= 4 

G R I D =  1 NOS. 25 
GRID= 2 NOS= 25 
GRID= 1 NOS= 48 
GRID= 2 NOS= 48 
G R I D =  1 N O S =  94 
USING THIS SET OF E S T I M A T E S ,  NO R G O T S  WERE FOUND 

G R I D =  1 NOS= 25 
G R I D =  1 N O S =  50 
U S I N G  T H I S  S E T  OF E S T I M A T E S ,  h0 R O O T S  HERE FOUhiD 

C 0 " f M E r U C I N G  CONSTANT APPROACH 

G R I D =  1 NOS= 25 
G R I D =  1 NOS= 50  
U S I N G  T H I S  SET OF ESTIMATES, NO R O O T S  WERE FOUND 
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1 
I 

APPENDIX I> 

FILTER C I R C U I T  WITH SIX UNKNOWNS 

D - 1  C i r c u i t  Diagram 

D-2 I d e n t i t y  of Unknowns 

Y = L  4 1  

Y5 = L2 

Y6 = l / c l  Y1 = K1 

Y2 - R2 

y3 - R3 

- 

- 

D-3 Set  of Equat ions 

= 8.0 x 10 2 
Y4y5 

Y2Y4 + Y3Y4 + Y1Y5 + Y3Y5 = 1.64 x 10 5 

y Y i- Y Y + Y Y t- Y2Y3 = 8.4 x 10 6 
5 6  1 2  1 3  
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Y3Y6 + Y2Y6 = 3 . 4  x 10 7 

Y3Y5 1.6 x 10 4 

Y2Y3 = 1.2 x 10 6 
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! 

APPENDIX E -- 
F I L T E R  C I R C l I I T  WIT11 THIRTEEN UNKNOWNS 

E - 1  C i r c u i t  Diagram 

E - 2  I d e n t i t y  of U n k n o w n s  

Y1 = R1 

Y = R  

Y = R  

2 2  

3 3  

- 
y4 - R4 

Y = R  5 5  

E - 3  S e t  of  Equations 

Y 6 1  = L  

Y7 = L2 

Y 8 = s  

Yl0 = l /c l  

Y l l  = 1/c2 

5 2  = 1/C3 

Y9 = L4 Y 1 3  = 1 / C q  

Y Y y + Y Y Y +- Y7Y8Y9 = 2.22 x 10 5 
6 7 9  6 8 9  
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i + Y Y Y + Y6Y9Y12 + Y7Y9Y12 -t 

x6xC)yll ' '8'9'11 + y7y9y10 y8y9y10 + '2'4'6 + 
y6y7y13 ' '6'8'13 7 8 13 

Y Y Y + Y2YqYg Y2Ygyg ' y3y4y6 ' y3y5y6 + 
2 5 6  

4 5 6  3 4 7  3 5 7  4 5 7  

1 5 7  1 4 8  

y y y  S Y Y Y  f Y Y Y  4 Y Y Y  + Y 1 Y 4 Y 7 +  

Y Y Y + Y Y Y + Y1Y5Y8 + YlY2Y9 + Y1Y3Y9 + 

t y y y + Y Y Y = 5.5399 x 10 9 
'1'5'9 2 3 9  2 5 9  

Y2Y6 Y13 i Y3Y6 Y13 t Y5Y6 Y13 + Y - Y  

'3'7 '13 '5'7 '13 ! '1'8 '13 + '2'8 '13 + 
Y 4 Y 6 Y 1 2 i Y Y  Y ! Y Y  4 7 1 2  Y + Y Y  5 7 1 2  Y + 

Y , ,  -t 1 7 13 

5 6 1 2  

Y1Y9 Y12 -4 Y 2 Y 5 Y 12 "4'6 '11 $- '5'6 '11 + 

'4'8 '11 ' '5'8 '11 ' '1'9 '11 + '2'9 '11 + 

y5y9 y l l  + y4y7 y l o  10 + y4y8 y l o  + 

y5y8 y l o  + y2y9 y lo  10 + y5y9 y lo  + 

Y1Y2Y4 1- Y Y Y + Y2Y3Y4 + Y1Y2Y5 + 

+ Y Y  Y 5 7 

+ Y Y  Y 3 9 

1 3 4  

'1'3'5 '2'3'5 
= 1.77245 x 10 11 
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t '6 '12'13 "7 '12' 13' ' 6  '11'13 4 Y  7 Y 10'13 

' 8  '10'13 + ' 8  ylly 3 '1'2 '13 3- '1'3 '13 4 

t Y Y  Y -1 '1'5 '13 + '1'4 '11 ' '1'5 '11 1 4 12 

'1'5 '12 ' '2'3 '13 + '2 '5 '13 ' '2'4 '10 + 

'2'5 '10 + '2'4 '12 + '2'5 '12 + '3'4 '10 -k 

y3Y5 Yl0 + Y3Y4 Y l l  + Y3Y5 Y l l  = 1.81860 x 10 12  

+ '1 '12'13 ' '1 '11'13 i Y  2 Y 12 Y 13 + '2 '10'13 

y3y11y13 3 10 13 4 11 12 4 10 1 2  

Y5 Y l 0 Y l 3  -t Y5 Y l 0 Y l 2  4 Y 5  Y l o Y l l  

+ Y Y Y  S Y Y Y  t Y Y Y  t 

Y Y  + Y  Y Y  + '4 y l O y l l  ' '5 12 13 ' '5 '11'13 5 11 12 

7.225 x 10 12 

-t Y Y Y 4- Yl0Yl1Yl3 = 5.0 x 10 12 '1 1'12'13 10 1 2  13 

Y Y Y = 9.0 x 10 5 5 7 9  

Y Y Y  S Y Y Y  = 1 . 5 0 ~ 1 0  8 
2 5 9  4 5 7  

= 6.78 x 10 9 
'5'9 '11 -t '5'7 '13 + '2'4'5 

Y2Y5 Y13 -t Y4Y5 Y l l  = 5.80 x 10 10 

11 
Y5 Y11Y13 = 1.20 x 10 

2 
Ys = 5.0 x 10 

. 

(E-5) 

( E - 6 )  

( E - 7 )  

(E-8) 

( E - 1 0 )  

(E-11) 

(E-12) 

(E-13) 
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